已知椭圆
,过点
且离心率为
.
求椭圆
的方程;
已知
是椭圆
的左右顶点,动点
满足
,连接
角椭圆于点
,在
轴上是否存在异于点
的定点
,使得以
为直径的圆经过直线
和直线
的交点,若存在,求出
点,若不存在,说明理由.![]()
科目:高中数学 来源: 题型:解答题
设椭圆C1:
=1(a>b>0)的左、右焦点分别为为
,
恰是抛物线C2:
的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
.
(1)求C1的方程;
(2)平面上的点N满足
,直线l∥MN,且与C1交于A,B两点,若
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设抛物线
:
的焦点为
,准线为
,过准线
上一点
且斜率为
的直线
交抛物线
于
,
两点,线段
的中点为
,直线
交抛物线
于
,
两点.
(1)求抛物线
的方程及
的取值范围;
(2)是否存在
值,使点
是线段
的中点?若存在,求出
值,若不存在,请说明理由. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的两个焦点分别为
和
,离心率
.
(1)求椭圆
的方程;
(2)设直线
(
)与椭圆
交于
、
两点,线段
的垂直平分线交
轴于点
,当
变化时,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知
,
,
,
分别是椭圆
的四个顶点,△
是一个边长为2的等边三角形,其外接圆为圆
.
(1)求椭圆
及圆
的方程;
(2)若点
是圆
劣弧
上一动点(点
异于端点
,
),直线
分别交线段
,椭圆
于点
,
,直线
与
交于点
.
(ⅰ)求
的最大值;
(ⅱ)试问:.
.,
两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,圆C:
与椭圆E:
有一个公共点
,
分别是椭圆的左、右焦点,直线
与圆C相切.![]()
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
在双曲线
上,且双曲线的一条渐近线的方程是
.
(1)求双曲线
的方程;
(2)若过点
且斜率为
的直线
与双曲线
有两个不同交点,求实数
的取值范围;
(3)设(2)中直线
与双曲线
交于
两个不同点,若以线段
为直径的圆经过坐标原点,求实数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com