如图,已知
,
,
,
分别是椭圆
的四个顶点,△
是一个边长为2的等边三角形,其外接圆为圆
.
(1)求椭圆
及圆
的方程;
(2)若点
是圆
劣弧
上一动点(点
异于端点
,
),直线
分别交线段
,椭圆
于点
,
,直线
与
交于点
.
(ⅰ)求
的最大值;
(ⅱ)试问:.
.,
两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.![]()
(1)
,
,(2)(ⅰ)
,(ⅱ)
.
解析试题分析:(1)求椭圆标准方程,只需两个独立条件. 由题意知,
,
,所以
,
,所以椭圆
的方程为
,求圆的方程,有两个选择,一是求圆的标准方程,确定圆心与半径,二是求圆的一般方程,只需代入圆上三个点的坐标.本题两个方法皆简单,如易得圆心
,
,所以圆
的方程为![]()
(2)(ⅰ)本题关键分析出比值
暗示的解题方向,由于点
在
轴上,所以
,因此解题方向为利用斜率分别表示出点
与点
的横坐标. 设直线
的方程为
,与直线
的方程
联立,解得点
,联立
,消去
并整理得,
,解得点
,因此![]()
当且仅当
时,取“=”,所以
的最大值为
.(ⅱ)求出点
的横坐标,分析与点
的横坐标的和是否为常数. 直线.
.的方程为
,与直线
的方程
联立,解得点
,所以
、
两点的横坐标之和为
.
试题解析:(1)由题意知,
,
,
所以
,
,所以椭圆
的方程为
, 2分
易得圆心
,
,所以圆
的方程为
. 4分
(2)解:设直线
的方程为
,
与直线
的方程
联立,解得点
, 6分
联立
,消去
并整理得,
,解得点
,
9分
(ⅰ)![]()
,当且仅当
时,取“=”,
所以
的最大值为
. 12分
(ⅱ)直线
的
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在原点,焦点在
轴上,离心率为
,它的一个焦点恰好与抛物线
的焦点重合.
求椭圆
的方程;
设椭圆的上顶点为
,过点
作椭圆
的两条动弦
,若直线
斜率之积为
,直线
是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知圆E
,点
,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹
的方程;
(2)点
,
,点G是轨迹
上的一个动点,直线AG与直线
相交于点D,试判断以线段BD为直径的圆与直线GF的位置关系,并证明你的结论.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
,过点
且离心率为
.
求椭圆
的方程;
已知
是椭圆
的左右顶点,动点
满足
,连接
角椭圆于点
,在
轴上是否存在异于点
的定点
,使得以
为直径的圆经过直线
和直线
的交点,若存在,求出
点,若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的右焦点为
,短轴的一个端点
到
的距离等于焦距.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
交于不同的两点
,
,是否存在直线
,使得△
与△
的面积比值为
?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线
的方程为
,过原点作斜率为
的直线和曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,如此下去,一般地,过点
作斜率为
的直线与曲线
相交,另一个交点记为
,设点
(
).
(1)指出
,并求
与
的关系式(
);
(2)求
(
)的通项公式,并指出点列
,
,
,向哪一点无限接近?说明理由;
(3)令
,数列
的前
项和为
,试比较
与
的大小,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知顶点为原点
的抛物线
的焦点
与椭圆
的右焦点重合,
与
在第一和第四象限的交点分别为
.
(1)若
是边长为
的正三角形,求抛物线
的方程;
(2)若
,求椭圆
的离心率
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分)
已知椭圆C:+=1
的离心率为,左焦点为F(-1,0),
(1) 设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若
,求直线L的方程;
(2)椭圆C上是否存在三点P,E,G,使得S△OPE=S△OPG=S△OEG=?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,以原点
为圆心,椭圆的短半轴长为半径的圆与直线
相切。
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
相交于
、
两点,且
,试判断
的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com