精英家教网 > 高中数学 > 题目详情

已知顶点为原点的抛物线的焦点与椭圆的右焦点重合,在第一和第四象限的交点分别为.
(1)若是边长为的正三角形,求抛物线的方程;
(2)若,求椭圆的离心率.

(1)抛物线的方程为;(2)椭圆的离心率.

解析试题分析:(1)先根据抛物线及椭圆的几何性质得到点关于轴对称,进而由求得点的坐标,接着代入抛物线的方程可求得的值,从而可确定抛物线的方程;(2)先根据确定的横坐标为,进而代入椭圆的方程可确定点的坐标,再将该点的坐标代入抛物线,从中可得关系式,另一方面,从而得到,即,只须求解关于的方程即可得到内的解.
试题解析:(1)设椭圆的右焦点为,依题意得抛物线的方程为
是边长为的正三角形,∴点的坐标是
代入抛物线的方程解得,故所求抛物线的方程为
(2)∵,∴点的横坐标是代入椭圆方程解得,即点的坐标是
∵点在抛物线上,∴
代入上式整理得:
,解得
,故所求椭圆的离心率.
考点:1.椭圆的标准方程及其几何性质;2.抛物线的标准方程及其几何性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足,M点的轨迹为曲线C。
(1)求C的方程;
(2)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线与抛物线交于两点A、B,如果弦的长度.
⑴求的值;
⑵求证:(O为原点)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆
(1)求椭圆及圆的方程;
(2)若点是圆劣弧上一动点(点异于端点),直线分别交线段,椭圆于点,直线交于点
(ⅰ)求的最大值;
(ⅱ)试问:..,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率,且直线是抛物线的一条切线.
(1)求椭圆的方程;
(2)点P 为椭圆上一点,直线,判断l与椭圆的位置关系并给出理由;
(3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,圆C:与椭圆E:有一个公共点分别是椭圆的左、右焦点,直线与圆C相切.

(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点为,短轴的端点分别为,且.
(1)求椭圆的方程;
(2)过点且斜率为的直线交椭圆于两点,弦的垂直平分线与轴相交于点.设弦的中点为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆C1的右焦点为F,P为椭圆上的一个动点.
(1)求线段PF的中点M的轨迹C2的方程;
(2)过点F的直线l与椭圆C1相交于点A、D,与曲线C2顺次相交于点B、C,当时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,直线相交于两点,轴、轴分别相交于两点,为坐标原点.
(1)若直线的方程为,求外接圆的方程;
(2)判断是否存在直线,使得是线段的两个三等分点,若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案