已知椭圆的离心率,且直线是抛物线的一条切线.
(1)求椭圆的方程;
(2)点P 为椭圆上一点,直线,判断l与椭圆的位置关系并给出理由;
(3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.
(1) ;(2)直线l与椭圆相切;(3)
解析试题分析:(1)直线是抛物线的一条切线.所以将直线代入抛物线方程,即,得出的值,利用,椭圆中,依次解出,从而解出方程; ①
(2)直线与椭圆方程联立,注意用到平方相减消,得到关于的方程,求其,利用点在椭圆上的条件,判定直线与椭圆的位置关系;
(3)首先取两种特殊情形:切点分别在短轴两端点时,求其切线方程,并求他们的交点,交点有可能是恒过的定点,如果是圆上恒过的定点,如果是则需满足,,从而判定所求交点是否是真正的定点.此题属于较难习题.
试题解析:(1)因为直线是抛物线的一条切线,所以,
即 2分
又,所以,
所以椭圆的方程是. 4分
(2)由得
由①2+②得②
科目:高中数学 来源: 题型:解答题
在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O,椭圆+=1与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程.
(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在,请求出Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的右焦点为,短轴的一个端点到的距离等于焦距.
(1)求椭圆的方程;
(2)过点的直线与椭圆交于不同的两点,,是否存在直线,使得△与△的面积比值为?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的中心和抛物线的顶点均为原点,、的焦点均在轴上,过的焦点F作直线,与交于A、B两点,在、上各取两个点,将其坐标记录于下表中:
(1)求,的标准方程;
(2)若与交于C、D两点,为的左焦点,求的最小值;
(3)点是上的两点,且,求证:为定值;反之,当为此定值时,是否成立?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知顶点为原点的抛物线的焦点与椭圆的右焦点重合,与在第一和第四象限的交点分别为.
(1)若是边长为的正三角形,求抛物线的方程;
(2)若,求椭圆的离心率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点,已知点的坐标为,点在线段的垂直平分线上,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
我们将不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点称为切点.解决下列问题:
已知抛物线上的点到焦点的距离等于4,直线与抛物线相交于不同的两点、,且(为定值).设线段的中点为,与直线平行的抛物线的切点为..
(1)求出抛物线方程,并写出焦点坐标、准线方程;
(2)用、表示出点、点的坐标,并证明垂直于轴;
(3)求的面积,证明的面积与、无关,只与有关.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知、、是长轴长为的椭圆上的三点,点是长轴的一个端点,过椭圆中心,且,.
(1)求椭圆的方程;
(2)在椭圆上是否存点,使得?若存在,有几个(不必求出点的坐标),若不存在,请说明理由;
(3)过椭圆上异于其顶点的任一点,作圆的两条线,切点分别为、,,若直线 在轴、轴上的截距分别为、,证明:为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com