设椭圆C1:
=1(a>b>0)的左、右焦点分别为为
,
恰是抛物线C2:
的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
.
(1)求C1的方程;
(2)平面上的点N满足
,直线l∥MN,且与C1交于A,B两点,若
,求直线l的方程.
(1)
;(2)
.
解析试题分析:(1)由抛物线的性质知其焦点为
,这是椭圆的右焦点,因此有
,点
是抛物线上的点,而
,可由抛物线的定义或抛物线焦半径公式得点
的横坐标为
,这样点
的纵坐标也能求得,而点
又是椭圆上的点,可代入椭圆方程得到关于
的一个方程,由此可求得
,得
方程;(2)由向量的坐标运算,根据
,可得
的坐标,于是直线
的斜率
可得,也即直线
的斜率可得,于是可设直线
的方程为
(
已求得),下面就采取处理直线与圆锥曲线相交问题的一般方法,设
,由
可得
,而我们把直线方程代入椭圆方程,得到关于
的二次方程,由此可得
,
,代入
可求得
.
(1)设点M(x,y) (y>0) 由抛物线定义得|MF2|=1+x=
,∴x=![]()
又点M(x,y) 在抛物上所以y2=4
,
![]()
,由椭圆定义![]()
所以椭圆
的方程是
4分
(2)![]()
![]()
![]()
![]()
.![]()
12分
考点:(1)椭圆的标准方程;(2)直线与椭圆相交的综合问题.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知椭圆
∶
的左、右焦点分别
、
焦距为
,且与双曲线
共顶点.
为椭圆
上一点,直线
交椭圆
于另一点
.
(1)求椭圆
的方程;
(2)若点
的坐标为
,求过
、
、
三点的圆的方程;![]()
(3)若
,且
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在原点,焦点在
轴上,离心率为
,它的一个焦点恰好与抛物线
的焦点重合.
求椭圆
的方程;
设椭圆的上顶点为
,过点
作椭圆
的两条动弦
,若直线
斜率之积为
,直线
是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
的离心率
,
.![]()
(1)求椭圆C的方程;
(2)如图,
是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交
轴于点N,直线AD交BP于点M。设BP的斜率为
,MN的斜率为
.证明:
为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为
.
(1)求椭圆C的方程;
(2)设A,B是椭圆C上的两点,△AOB的面积为
.若A、B两点关于x轴对称,E为线段AB的中点,射线OE交椭圆C于点P.如果
=t
,求实数t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
为椭圆
的左右焦点,点
为其上一点,且有![]()
.
(1)求椭圆
的标准方程;
(2)过
的直线
与椭圆
交于
、
两点,过
与
平行的直线
与椭圆
交于
、
两点,求四边形
的面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知圆E
,点
,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹
的方程;
(2)点
,
,点G是轨迹
上的一个动点,直线AG与直线
相交于点D,试判断以线段BD为直径的圆与直线GF的位置关系,并证明你的结论.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
,过点
且离心率为
.
求椭圆
的方程;
已知
是椭圆
的左右顶点,动点
满足
,连接
角椭圆于点
,在
轴上是否存在异于点
的定点
,使得以
为直径的圆经过直线
和直线
的交点,若存在,求出
点,若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分)
已知椭圆C:+=1
的离心率为,左焦点为F(-1,0),
(1) 设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若
,求直线L的方程;
(2)椭圆C上是否存在三点P,E,G,使得S△OPE=S△OPG=S△OEG=?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com