在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为
.
(1)求椭圆C的方程;
(2)设A,B是椭圆C上的两点,△AOB的面积为
.若A、B两点关于x轴对称,E为线段AB的中点,射线OE交椭圆C于点P.如果
=t
,求实数t的值.
科目:高中数学 来源: 题型:解答题
(14分)(2011•广东)在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.
(1)当点P在l上运动时,求点M的轨迹E的方程;
(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;
(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2011•山东)在平面直角坐标系xOy中,已知椭圆
.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足
,
,M点的轨迹为曲线C。
(1)求C的方程;
(2)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)
(Ⅰ)求抛物线C的方程;
(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆C1:
=1(a>b>0)的左、右焦点分别为为
,
恰是抛物线C2:
的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
.
(1)求C1的方程;
(2)平面上的点N满足
,直线l∥MN,且与C1交于A,B两点,若
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
长方形
中,
,
.以
的中点
为坐标原点,建立如图所示的直角坐标系.![]()
(1) 求以
、
为焦点,且过
、
两点的椭圆的标准方程;
(2) 过点
的直线
交(1)中椭圆于
两点,是否存在直线
,使得以线段
为直径的圆恰好过坐标原点?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆![]()
的右焦点为![]()
,短轴的端点分别为
,且
.
(1)求椭圆
的方程;
(2)过点
且斜率为![]()
的直线
交椭圆于
两点,弦
的垂直平分线与
轴相交于点
.设弦
的中点为
,试求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com