(14分)(2011•广东)在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.
(1)当点P在l上运动时,求点M的轨迹E的方程;
(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;
(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.
(1)y2=4x+4 (x≥﹣1)或y=0(x<﹣1)
(2)
(3)(﹣]∪(0,+∞)
解析试题分析:(1)由于直线l:x=﹣2交x轴于点A,所以A(﹣2,0),由于P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP,可以设点P,由于满足∠MPO=∠AOP,所以分析出MN∥AO,利用相关点法可以求出动点M的轨迹方程;
(2)由题意及点M的轨迹E的方程为y2=4(x+1),且已知T(1,﹣1),又H是E 上动点,点O及点T都为定点,利用图形即可求出;
(3)由题意设出过定点的直线方程l1并与点M的轨迹E的方程联立,利用有两个交点等价与联立之后的一元二次方程的判别式大于0,即可得到所求.
解:(1)如图所示,连接OM,则|PM|=|OM|∵∠MPO=∠AOP,∴动点M满足MP⊥l或M在x的负半轴上,设M(x,y) ①当MP⊥l时,|MP|=|x+2|,|om|=,|x+2|=,化简得y2=4x+4 (x≥﹣1)②当M在x的负半轴上时,y=0(x<﹣1)综上所述,点M的轨迹E的方程为y2=4x+4 (x≥﹣1)或y=0(x<﹣1)
(2)由题意画出图形如下:
∵由(1)知道动点M 的轨迹方程为:y2=4(x+1).
是以(﹣1,0)为顶点,以O(0,0)为焦点,以x=﹣2为准线的抛物线,
由H引直线HB垂直准线x=﹣2与B点,则
利用抛物线的定义可以得到:|HB|=|HO|,
∴要求|HO|+|HT|的最小值等价于求折线|HB|+|HT|的最小值,
由图可知当由点T直接向准线引垂线是与抛物线相交的H使得HB|+|HT|的最小值,
故|HO|+|HT|的最小值时的H.
(3)如图,设抛物线顶点A(﹣1,0),则直线AT的斜率∵点T(1,﹣1)在抛物线内部,∴过点T且不平行于x,y轴的直线l1必与抛物线有两个交点则直线l1与轨迹E的交点个数分以下四种情况讨论:①当K时,直线l1与轨迹E有且只有两个不同的交点 ②当时,直线l1与轨迹E有且只有三个不同的交点 ③当K=0时,直线l1与轨迹E有且只有一个交点 ④当K>0时,直线l1与轨迹E有且只有两个不同的交点综上所述,直线l1的斜率K的取值范围是
(﹣]∪(0,+∞)
点评:此题重点考查了利用相关点法求动点的轨迹方程,还考查了利用抛物线的定义求出HO|+|HT|的最小值时等价转化的思想,还考查了直线与曲线有两个交点的等价转化思想.
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率,分别为椭圆的长轴和短轴的端点,为中点,为坐标原点,且.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,求面积最大时,直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.
(1)若圆过原点,求圆的方程;
(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的两个焦点为、点在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.
(1)如图所示,若,求直线l的方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知椭圆∶的左、右焦点分别、焦距为,且与双曲线共顶点.为椭圆上一点,直线交椭圆于另一点.
(1)求椭圆的方程;
(2)若点的坐标为,求过、、三点的圆的方程;
(3)若,且,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的一个焦点为,且离心率为.
(1)求椭圆方程;
(2)斜率为的直线过点,且与椭圆交于两点,为直线上的一点,若△为等边三角形,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知A、B为抛物线C:y2 = 4x上的两个动点,点A在第一象限,点B在第四象限l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.
(1)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;
(2)设C、D为直线l1、l2与直线x = 4的交点,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.
(1)求椭圆C的方程;
(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com