在平面直角坐标系
中,已知椭圆
∶
的左、右焦点分别
、
焦距为
,且与双曲线
共顶点.
为椭圆
上一点,直线
交椭圆
于另一点
.
(1)求椭圆
的方程;
(2)若点
的坐标为
,求过
、
、
三点的圆的方程;![]()
(3)若
,且
,求
的最大值.
科目:高中数学 来源: 题型:解答题
已知F1,F2是椭圆C:
+
=1(a>b>0)的左、右焦点,点P(-
,1)在椭圆上,线段PF2与y轴的交点M满足
+
=0.
(1)求椭圆C的方程;
(2)椭圆C上任一动点N(x0,y0)关于直线y=2x的对称点为N1(x1,y1),求3x1-4y1的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:
的焦点为F,直线
与y轴的交点为P,与C的交点为Q,且
.
(1)求C的方程;
(2)过F的直线
与C相交于A,B两点,若AB的垂直平分线
与C相较于M,N两点,且A,M,B,N四点在同一圆上,求
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)(2011•广东)在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.
(1)当点P在l上运动时,求点M的轨迹E的方程;
(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;
(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
的圆心在坐标原点
,且恰好与直线
相切,设点A为圆上一动点,
轴于点
,且动点
满足
,设动点
的轨迹为曲线![]()
(1)求曲线C的方程,
(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,原点为
,抛物线
的方程为
,线段
是抛物线
的一条动弦.
(1)求抛物线
的准线方程和焦点坐标
;
(2)若
,求证:直线
恒过定点;
(3)当
时,设圆
,若存在且仅存在两条动弦
,满足直线
与圆
相切,求半径
的取值范围?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆C1:
=1(a>b>0)的左、右焦点分别为为
,
恰是抛物线C2:
的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
.
(1)求C1的方程;
(2)平面上的点N满足
,直线l∥MN,且与C1交于A,B两点,若
,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com