精英家教网 > 高中数学 > 题目详情

已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.

(1);(2)

解析试题分析:(1)由焦点坐标可得的值,由长轴长可得的值,再根据椭圆中,求。从而可得椭圆方程。(2)由点斜式可得直线方程为。将直线方程与椭圆方程联立消去得关于的一元二次方程,可得根与系数的关系。再根据弦长公式求线段的长。
⑴由,长轴长为6 
得:所以 
∴椭圆方程为                              5分
⑵设,由⑴可知椭圆方程为①,
∵直线AB的方程为②                                  7分
把②代入①得化简并整理得
                                      10分
                            12分
考点:1椭圆的简单几何性质;2直线和圆锥曲线相交弦问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程;
(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,分别是椭圆的左、右焦点,过点的直线交椭圆两点,
(1)若的周长为16,求
(2)若,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知椭圆的焦点在轴上,离心率为,且经过点
(1)求椭圆的标准方程;
(2) 以椭圆的长轴为直径作圆,设为圆上不在坐标轴上的任意一点,轴上一点,过圆心作直线的垂线交椭圆右准线于点.问:直线能否与圆总相切,如果能,求出点的坐标;如果不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的两个焦点为在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•重庆)如图,椭圆的中心为原点O,离心率e=,一条准线的方程为x=2

(Ⅰ)求该椭圆的标准方程.
(Ⅱ)设动点P满足,其中M,N是椭圆上的点.直线OM与ON的斜率之积为﹣
问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知椭圆的左、右焦点分别焦距为,且与双曲线共顶点.为椭圆上一点,直线交椭圆于另一点
(1)求椭圆的方程;
(2)若点的坐标为,求过三点的圆的方程;
(3)若,且,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:( )的离心率为,点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)若椭圆C的两条切线交于点M(4,),其中,切点分别是A、B,试利用结论:在椭圆上的点()处的椭圆切线方程是,证明直线AB恒过椭圆的右焦点
(3)试探究的值是否恒为常数,若是,求出此常数;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的离心率.

(1)求椭圆C的方程;
(2)如图,是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交轴于点N,直线AD交BP于点M。设BP的斜率为,MN的斜率为.证明:为定值。

查看答案和解析>>

同步练习册答案