精英家教网 > 高中数学 > 题目详情

,分别是椭圆的左、右焦点,过点的直线交椭圆两点,
(1)若的周长为16,求
(2)若,求椭圆的离心率.

(1);(2).

解析试题分析:(1)由题意可以求得,而的周长为,再由椭圆定义可得.故.(2)设出,则.根据椭圆定义以及余弦定理可以表示出的关系,从而,则,故为等腰直角三角形.从而,所以椭圆的离心率.
(1)由,得.因为的周长为,所以由椭圆定义可得.故.
(2)设,则.由椭圆定义可得.
中,由余弦定理可得,即,化简可得,而,故.于是有.因此,可得,故为等腰直角三角形.从而,所以椭圆的离心率.
考点:1.椭圆的定义;2.椭圆的离心率求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右顶点分别是,左、右焦点分别是.若成等比数列,求此椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,点P(-,1)在椭圆上,线段PF2与y轴的交点M满足=0.
(1)求椭圆C的方程;
(2)椭圆C上任一动点N(x0,y0)关于直线y=2x的对称点为N1(x1,y1),求3x1-4y1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知双曲线的两条渐近线分别为.

(1)求双曲线的离心率;
(2)如图,为坐标原点,动直线分别交直线两点(分别在第一,四象限),且的面积恒为8,试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线过点P且离心率为.
(1)求的方程;
(2)椭圆过点P且与有相同的焦点,直线的右焦点且与交于A,B两点,若以线段AB为直径的圆心过点P,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆经过点,离心率,直线与椭圆交于两点,向量,且
(1)求椭圆的方程;
(2)当直线过椭圆的焦点为半焦距)时,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C:的焦点为F,直线与y轴的交点为P,与C的交点为Q,且.
(1)求C的方程;
(2)过F的直线与C相交于A,B两点,若AB的垂直平分线与C相较于M,N两点,且A,M,B,N四点在同一圆上,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆是椭圆的左右焦点,且椭圆经过点.
(1)求该椭圆方程;
(2)过点且倾斜角等于的直线,交椭圆于两点,求的面积.

查看答案和解析>>

同步练习册答案