精英家教网 > 高中数学 > 题目详情

已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,点P(-,1)在椭圆上,线段PF2与y轴的交点M满足=0.
(1)求椭圆C的方程;
(2)椭圆C上任一动点N(x0,y0)关于直线y=2x的对称点为N1(x1,y1),求3x1-4y1的取值范围.

(1)=1    (2)[-10,10]

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C:和直线L:="1," 椭圆的离心率,坐标原点到直线L的距离为
(1)求椭圆的方程;
(2)已知定点,若直线与椭圆C相交于M、N两点,试判断是否存在值,使以MN为直径的圆过定点E?若存在求出这个值,若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,直线,动点P到点F的距离与到直线的距离相等.
(1)求动点P的轨迹C的方程;
(2)直线与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程;
(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率分别为椭圆的长轴和短轴的端点,中点,为坐标原点,且.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,求面积最大时,直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.
(1)求抛物线C的方程;
(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图5,为坐标原点,双曲线和椭圆均过点,且以的两个顶点和的两个焦点为顶点的四边形是面积为2的正方形.
(1)求的方程;
(2)是否存在直线,使得交于两点,与只有一个公共点,且?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,分别是椭圆的左、右焦点,过点的直线交椭圆两点,
(1)若的周长为16,求
(2)若,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知椭圆的左、右焦点分别焦距为,且与双曲线共顶点.为椭圆上一点,直线交椭圆于另一点
(1)求椭圆的方程;
(2)若点的坐标为,求过三点的圆的方程;
(3)若,且,求的最大值.

查看答案和解析>>

同步练习册答案