已知F1,F2是椭圆C:
+
=1(a>b>0)的左、右焦点,点P(-
,1)在椭圆上,线段PF2与y轴的交点M满足
+
=0.
(1)求椭圆C的方程;
(2)椭圆C上任一动点N(x0,y0)关于直线y=2x的对称点为N1(x1,y1),求3x1-4y1的取值范围.
科目:高中数学 来源: 题型:解答题
已知椭圆C:![]()
和直线L:
="1," 椭圆的离心率
,坐标原点到直线L的距离为
。
(1)求椭圆的方程;
(2)已知定点
,若直线![]()
与椭圆C相交于M、N两点,试判断是否存在
值,使以MN为直径的圆过定点E?若存在求出这个
值,若不存在说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,直线
,动点P到点F的距离与到直线
的距离相等.
(1)求动点P的轨迹C的方程;
(2)直线
与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程;
(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于
?若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率
,
分别为椭圆的长轴和短轴的端点,
为
中点,
为坐标原点,且
.
(1)求椭圆的方程;
(2)过点
的直线
交椭圆于
两点,求
面积最大时,直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:
的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且
.
(1)求抛物线C的方程;
(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线
与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图5,
为坐标原点,双曲线
和椭圆
均过点
,且以
的两个顶点和
的两个焦点为顶点的四边形是面积为2的正方形.
(1)求
的方程;
(2)是否存在直线
,使得
与
交于
两点,与
只有一个公共点,且
?证明你的结论.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知椭圆
∶
的左、右焦点分别
、
焦距为
,且与双曲线
共顶点.
为椭圆
上一点,直线
交椭圆
于另一点
.
(1)求椭圆
的方程;
(2)若点
的坐标为
,求过
、
、
三点的圆的方程;![]()
(3)若
,且
,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com