精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率分别为椭圆的长轴和短轴的端点,中点,为坐标原点,且.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,求面积最大时,直线的方程.

(1);(2)直线的方程为.

解析试题分析:(1)利用椭圆的性质,弦长可得,由此可求,故椭圆的方程为
(2)根据直线与椭圆的位置关系,设直线的方程为,联立方程得,所以可写出
,则,则,其中,易证单调减,当时,的最大值为.所以,此时,直线的方程为.
(1)∵①                    2分

    ②,
∴由①②得
∴椭圆的方程为                    4分
(2)设直线的方程为

                   7分



,则
,其中
易证单调减,当时,的最大值为         10分

此时,直线的方程为        12分
考点:椭圆的性质、椭圆的标准方程、直线与椭圆的位置关系、韦达定理、三角形的面积公式、勾函数的性质、换元法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆,离心率为,左右焦点分别为
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,与以为直径的圆交于两点,且满足,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线E上任意一点P到两个定点F1(-,0)和F2(,0)的距离之和为4.
(1)求曲线E的方程;
(2)设过点(0,-2)的直线l与曲线E交于C、D两点,且·=0(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆E:=1(a>b>0)的上焦点是F1,过点P(3,4)和F1作直线PF1交椭圆于A,B两点,已知A().
(1)求椭圆E的方程;
(2)设点C是椭圆E上到直线PF1距离最远的点,求C点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.

(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,点P(-,1)在椭圆上,线段PF2与y轴的交点M满足=0.
(1)求椭圆C的方程;
(2)椭圆C上任一动点N(x0,y0)关于直线y=2x的对称点为N1(x1,y1),求3x1-4y1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个焦点为,离心率为.
(1)求椭圆的标准方程;
(2)若动点为椭圆外一点,且点到椭圆的两条切线相互垂直,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线过点P且离心率为.
(1)求的方程;
(2)椭圆过点P且与有相同的焦点,直线的右焦点且与交于A,B两点,若以线段AB为直径的圆心过点P,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)(2011•广东)在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.
(1)当点P在l上运动时,求点M的轨迹E的方程;
(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;
(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.

查看答案和解析>>

同步练习册答案