精英家教网 > 高中数学 > 题目详情

已知椭圆C:和直线L:="1," 椭圆的离心率,坐标原点到直线L的距离为
(1)求椭圆的方程;
(2)已知定点,若直线与椭圆C相交于M、N两点,试判断是否存在值,使以MN为直径的圆过定点E?若存在求出这个值,若不存在说明理由。

(1);(2)

解析试题分析:1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.
试题解析:解:(1)直线L:
由题意得:  又有
解得:。 
(2)若存在,则,设,则:

联立得:(*)


代入(*)式,得:

满足
考点:(1)求椭圆的标准方程;(2)直线与椭圆相交的综合问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线.
(1)若直线与抛物线相交于两点,求弦长;
(2)已知△的三个顶点在抛物线上运动.若点在坐标原点,边过定点,点上且,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,离心率为,左右焦点分别为
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,与以为直径的圆交于两点,且满足,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆 的离心率为,过的左焦点的直线被圆截得的弦长为.
(1)求椭圆的方程;
(2)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.
(1)求曲线C的方程;
(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.
(ⅰ)证明:k·kON为定值;
(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右顶点分别是,左、右焦点分别是.若成等比数列,求此椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,点P(-,1)在椭圆上,线段PF2与y轴的交点M满足=0.
(1)求椭圆C的方程;
(2)椭圆C上任一动点N(x0,y0)关于直线y=2x的对称点为N1(x1,y1),求3x1-4y1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知椭圆的离心率为,则__________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

抛物线上有两点A、B,且|AB|=6.则线段AB的中点M到y轴的最小距离为      .

查看答案和解析>>

同步练习册答案