精英家教网 > 高中数学 > 题目详情

已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.
(1)求曲线C的方程;
(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.
(ⅰ)证明:k·kON为定值;
(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.

(1);(2)(ⅰ);(ⅱ)不存在.

解析试题分析:(1)由于曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4,结合椭圆的定义可知曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,从而可写出曲线C的方程;
(2)由已知可设出过点直线l的方程,并设出直线l与曲线C所有交点的坐标;然后联立直线方程与曲线C的方程,消去y就可获得一个关于x的一元二次方程,应用韦达定理就可写出两交点模坐标的和与积;(ⅰ)应用上述结果就可以用k的代数式表示出弦的中点坐标,这样就可求出ON的斜率,再乘以k就可证明k·kON为定值;(ⅱ)由F1N⊥AC,得kAC•kFN= -1,结合前边结果就可将此等式转化为关于k的一个方程,解此方程,若无解,则对应直线不存在,若有解,则存在且对应直线方程很易写出来.
试题解析:(1)由已知可得:曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,所以,故曲线C的方程为:.     4分
(2)设过点M的直线l的方程为y=k(x+4),设B(x1, y1),C(x2, y2)(x2>y2).
(ⅰ)联立方程组,得
,            5分
,      7分
所以,所以k•kON=为定值.      8分
(ⅱ)若F1N⊥AC,则kAC•kFN= -1,
因为F1 (-1,0),,   10分
代入y2=k(x2+4)得x2=-2-8k2,y2="2k" -8k3,而x2≥-2,故只能k=0,显然不成立,所以这样的直线不存在.                13分
考点:1.椭圆的方程;2.直线与椭圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆和动圆,直线:分别有唯一的公共点
(Ⅰ)求的取值范围;
(Ⅱ)求的最大值,并求此时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:和直线L:="1," 椭圆的离心率,坐标原点到直线L的距离为
(1)求椭圆的方程;
(2)已知定点,若直线与椭圆C相交于M、N两点,试判断是否存在值,使以MN为直径的圆过定点E?若存在求出这个值,若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆Γ:(a>b>0)经过D(2,0),E(1,)两点.
(1)求椭圆Γ的方程;
(2)若直线与椭圆Γ交于不同两点A,B,点G是线段AB中点,点O是坐标原点,设射线OG交Γ于点Q,且.
①证明:
②求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的方程为,直线l过定点,斜率为k.当k为何值时,直线l与该抛物线:只有一个公共点;有两个公共点;没有公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,直线,动点P到点F的距离与到直线的距离相等.
(1)求动点P的轨迹C的方程;(2)直线与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,直线,动点P到点F的距离与到直线的距离相等.
(1)求动点P的轨迹C的方程;
(2)直线与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图5,为坐标原点,双曲线和椭圆均过点,且以的两个顶点和的两个焦点为顶点的四边形是面积为2的正方形.
(1)求的方程;
(2)是否存在直线,使得交于两点,与只有一个公共点,且?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知双曲线的一条渐近线方程为,则双曲线的离心率为___

查看答案和解析>>

同步练习册答案