已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.
(1)求曲线C的方程;
(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.
(ⅰ)证明:k·kON为定值;
(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.
(1)
;(2)(ⅰ)
;(ⅱ)不存在.
解析试题分析:(1)由于曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4,结合椭圆的定义可知曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,从而可写出曲线C的方程;
(2)由已知可设出过点直线l的方程,并设出直线l与曲线C所有交点的坐标;然后联立直线方程与曲线C的方程,消去y就可获得一个关于x的一元二次方程,应用韦达定理就可写出两交点模坐标的和与积;(ⅰ)应用上述结果就可以用k的代数式表示出弦的中点坐标,这样就可求出ON的斜率,再乘以k就可证明k·kON为定值;(ⅱ)由F1N⊥AC,得kAC•kFN= -1,结合前边结果就可将此等式转化为关于k的一个方程,解此方程,若无解,则对应直线不存在,若有解,则存在且对应直线方程很易写出来.
试题解析:(1)由已知可得:曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,所以
,故曲线C的方程为:
. 4分
(2)设过点M的直线l的方程为y=k(x+4),设B(x1, y1),C(x2, y2)(x2>y2).
(ⅰ)联立方程组
,得
,
则
, 5分
故
,
, 7分
所以
,所以k•kON=
为定值. 8分
(ⅱ)若F1N⊥AC,则kAC•kFN= -1,
因为F1 (-1,0),
故![]()
, 10分
代入y2=k(x2+4)得x2=-2-8k2,y2="2k" -8k3,而x2≥-2,故只能k=0,显然不成立,所以这样的直线不存在. 13分
考点:1.椭圆的方程;2.直线与椭圆的位置关系.
科目:高中数学 来源: 题型:解答题
已知椭圆C:![]()
和直线L:
="1," 椭圆的离心率
,坐标原点到直线L的距离为
。
(1)求椭圆的方程;
(2)已知定点
,若直线![]()
与椭圆C相交于M、N两点,试判断是否存在
值,使以MN为直径的圆过定点E?若存在求出这个
值,若不存在说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆Γ:
(a>b>0)经过D(2,0),E(1,
)两点.
(1)求椭圆Γ的方程;
(2)若直线
与椭圆Γ交于不同两点A,B,点G是线段AB中点,点O是坐标原点,设射线OG交Γ于点Q,且
.
①证明:![]()
②求△AOB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,直线
,动点P到点F的距离与到直线
的距离相等.
(1)求动点P的轨迹C的方程;(2)直线
与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,直线
,动点P到点F的距离与到直线
的距离相等.
(1)求动点P的轨迹C的方程;
(2)直线
与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图5,
为坐标原点,双曲线
和椭圆
均过点
,且以
的两个顶点和
的两个焦点为顶点的四边形是面积为2的正方形.
(1)求
的方程;
(2)是否存在直线
,使得
与
交于
两点,与
只有一个公共点,且
?证明你的结论.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com