已知椭圆![]()
的离心率为
,过
的左焦点
的直线
被圆
截得的弦长为
.
(1)求椭圆
的方程;
(2)设
的右焦点为
,在圆
上是否存在点
,满足
,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.
(1)
;(2)存在.
解析试题分析:本题主要考查椭圆的标准方程及其几何性质,点到直线的距离公式、垂径定理、两圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的左焦点坐标、离心率联立得到椭圆的基本量a,b,c,从而得到椭圆的标准方程;第二问,先利用点
到直线
的距离公式计算出点到直线的距离,再利用垂径定理求出圆
的半径,从而得到圆
的具体方程,假设圆
上存在点P满足条件,利用两点间距离公式列出方程,经整理得到一个新的圆,利用2个圆心的距离和半径的关系判断出2个圆相交,所以说明存在两个不同的点P.
试题解析:因为直线
的方程为
,
令
,得
,即
1分
∴
,又∵
,∴
, ![]()
∴ 椭圆
的方程为
. 4分
(2)存在点P,满足![]()
∵ 圆心
到直线
的距离为
,
又直线
被圆
截得的弦长为
,
∴由垂径定理得
,
故圆
的方程为
. 8分
设圆
上存在点
,满足
即
,
且
的坐标为
,
则
,
整理得
,它表示圆心在
,半径是
的圆。
∴
12分
故有
,即圆
与圆
相交,有两个公共点。
∴圆
上存在两个不同点
,满足
. 14分
考点:椭圆的标准方程及其几何性质,点到直线的距离公式、垂径定理、两圆的位置关系.
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,且过点 ![]()
![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若
.
(i)求
的最值:
(i i)求证:四边形ABCD的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为
和
,且|![]()
|=2,
点(1,
)在该椭圆上.
(1)求椭圆C的方程;
(2)过
的直线
与椭圆C相交于A,B两点,若
A
B的面积为
,求以
为圆心且与直线
相切圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:![]()
和直线L:
="1," 椭圆的离心率
,坐标原点到直线L的距离为
。
(1)求椭圆的方程;
(2)已知定点
,若直线![]()
与椭圆C相交于M、N两点,试判断是否存在
值,使以MN为直径的圆过定点E?若存在求出这个
值,若不存在说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点A(-1,0),B(1,-1)和抛物线.
,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)证明:
为定值;
(2)若△POM的面积为
,求向量
与
的夹角;
(3)证明直线PQ恒过一个定点.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点A(1,0),B (2,0) .动点M满足
,
(1)求点M的轨迹C;
(2)若过点B的直线l(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F
(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:
的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且
.
(1)求抛物线C的方程;
(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线
与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
在下列命题中:
①方程|x|+|y|=1表示的曲线所围成区域面积为2;
②与两坐标轴距离相等的点的轨迹方程为y=±x;[来源:Z,xx,k.Com]
③与两定点(-1,0)、(1,0)距离之和等于1的点的轨迹为椭圆;
④与两定点(-1,0)、(1,0)距离之差的绝对值等于1的点的轨迹为双曲线.
正确的命题的序号是________.(注:把你认为正确的命题序号都填上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com