精英家教网 > 高中数学 > 题目详情

椭圆的离心率.

(1)求椭圆C的方程;
(2)如图,是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交轴于点N,直线AD交BP于点M。设BP的斜率为,MN的斜率为.证明:为定值。

(1)   (2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆是椭圆的左右焦点,且椭圆经过点.
(1)求该椭圆方程;
(2)过点且倾斜角等于的直线,交椭圆于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为,短轴一个端点到右焦点的距离为
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,以弦为直径的圆过坐标原点,试探讨点到直线的距离是否为定值?若是,求出这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足,M点的轨迹为曲线C。
(1)求C的方程;
(2)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆,直线的方程为,过右焦点的直线与椭圆交于异于左顶点两点,直线交直线分别于点
(1)当时,求此时直线的方程;
(2)试问两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆C1=1(a>b>0)的左、右焦点分别为为恰是抛物线C2的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
(1)求C1的方程;
(2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设抛物线的焦点为,准线为,过准线上一点且斜率为的直线交抛物线两点,线段的中点为,直线交抛物线两点.
(1)求抛物线的方程及的取值范围;
(2)是否存在值,使点是线段的中点?若存在,求出值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,圆C:与椭圆E:有一个公共点分别是椭圆的左、右焦点,直线与圆C相切.

(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的取值范围.

查看答案和解析>>

同步练习册答案