已知椭圆C:
的离心率为
,短轴一个端点到右焦点的距离为
.
(1)求椭圆C的方程;
(2)设直线
与椭圆C交于A、B两点,以
弦为直径的圆过坐标原点
,试探讨点
到直线
的距离是否为定值?若是,求出这个定值;若不是,说明理由.
(1)
;(2)是定值,定值为
.
解析试题分析:(1)利用椭圆的离心率为
,短轴一个端点到右焦点的距离为
,建立方程组,即可求椭圆C的方程;(2)分类讨论,①当
轴时,得
②当
与
轴不垂直时,设直线
的方程为
.联立
,得
,利用韦达定理,及以AB弦为直径的圆过坐标原点O,则有
,得
,再利用点到直线的距离公式,即可求得结论.
解:(1)设椭圆的半焦距为
,依题意
,
所求椭圆方程为
.
(2)设
,
.
①当
轴时,设
方程为:
,此时
两点关于
轴对称,
又以
为直径的圆过原点,设
代人椭圆方程得:![]()
②当
与
轴不垂直时,
设直线
的方程为
.联立
,
整理得
,
,
.
又![]()
![]()
。
由以
为直径的圆过原点,则有
。 即:
故满足:
得:
所以
=
。又点
到直线
的距离为:
。
综上所述:点
到直线
的距离为定值
.
考点:1.直线与圆锥曲线的关系;2.椭圆的标准方程.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知椭圆的焦点在
轴上,离心率为
,且经过点
.
(1)求椭圆的标准方程;
(2) 以椭圆的长轴为直径作圆
,设
为圆
上不在坐标轴上的任意一点,
为
轴上一点,过圆心
作直线
的垂线交椭圆右准线于点
.问:直线
能否与圆
总相切,如果能,求出点
的坐标;如果不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(
)的离心率为
,点(1,
)在椭圆C上.
(1)求椭圆C的方程;
(2)若椭圆C的两条切线交于点M(4,
),其中
,切点分别是A、B,试利用结论:在椭圆
上的点(
)处的椭圆切线方程是
,证明直线AB恒过椭圆的右焦点
;
(3)试探究
的值是否恒为常数,若是,求出此常数;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2011•湖北)平面内与两定点A1(﹣a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(1)求曲线C的方程,并讨论C的形状与m值的关系;
(2)当m=﹣1时,对应的曲线为C1;对给定的m∈(﹣1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在原点,焦点在
轴上,离心率为
,它的一个焦点恰好与抛物线
的焦点重合.
求椭圆
的方程;
设椭圆的上顶点为
,过点
作椭圆
的两条动弦
,若直线
斜率之积为
,直线
是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
的离心率
,
.![]()
(1)求椭圆C的方程;
(2)如图,
是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交
轴于点N,直线AD交BP于点M。设BP的斜率为
,MN的斜率为
.证明:
为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
为椭圆
的左右焦点,点
为其上一点,且有![]()
.
(1)求椭圆
的标准方程;
(2)过
的直线
与椭圆
交于
、
两点,过
与
平行的直线
与椭圆
交于
、
两点,求四边形
的面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线
的方程为
,过原点作斜率为
的直线和曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,如此下去,一般地,过点
作斜率为
的直线与曲线
相交,另一个交点记为
,设点
(
).
(1)指出
,并求
与
的关系式(
);
(2)求
(
)的通项公式,并指出点列
,
,
,向哪一点无限接近?说明理由;
(3)令
,数列
的前
项和为
,试比较
与
的大小,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com