精英家教网 > 高中数学 > 题目详情

已知椭圆C:的离心率为,短轴一个端点到右焦点的距离为
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,以弦为直径的圆过坐标原点,试探讨点到直线的距离是否为定值?若是,求出这个定值;若不是,说明理由.

(1);(2)是定值,定值为

解析试题分析:(1)利用椭圆的离心率为 ,短轴一个端点到右焦点的距离为,建立方程组,即可求椭圆C的方程;(2)分类讨论,①当轴时,得②当轴不垂直时,设直线的方程为.联立,得,利用韦达定理,及以AB弦为直径的圆过坐标原点O,则有,得,再利用点到直线的距离公式,即可求得结论.
解:(1)设椭圆的半焦距为,依题意   ,  
所求椭圆方程为
(2)设
①当轴时,设方程为:,此时两点关于轴对称,
又以为直径的圆过原点,设代人椭圆方程得:
②当轴不垂直时,
设直线的方程为.联立
整理得


由以为直径的圆过原点,则有。 即: 故满足:   得:  
所以=。又点到直线的距离为:
综上所述:点到直线的距离为定值
考点:1.直线与圆锥曲线的关系;2.椭圆的标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知椭圆的焦点在轴上,离心率为,且经过点
(1)求椭圆的标准方程;
(2) 以椭圆的长轴为直径作圆,设为圆上不在坐标轴上的任意一点,轴上一点,过圆心作直线的垂线交椭圆右准线于点.问:直线能否与圆总相切,如果能,求出点的坐标;如果不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:( )的离心率为,点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)若椭圆C的两条切线交于点M(4,),其中,切点分别是A、B,试利用结论:在椭圆上的点()处的椭圆切线方程是,证明直线AB恒过椭圆的右焦点
(3)试探究的值是否恒为常数,若是,求出此常数;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•湖北)平面内与两定点A1(﹣a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(1)求曲线C的方程,并讨论C的形状与m值的关系;
(2)当m=﹣1时,对应的曲线为C1;对给定的m∈(﹣1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个焦点恰好与抛物线的焦点重合.
求椭圆的方程;
设椭圆的上顶点为,过点作椭圆的两条动弦,若直线斜率之积为,直线是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过点作倾斜角为的直线与曲线C交于不同的两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的离心率.

(1)求椭圆C的方程;
(2)如图,是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交轴于点N,直线AD交BP于点M。设BP的斜率为,MN的斜率为.证明:为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左右焦点,点为其上一点,且有
.
(1)求椭圆的标准方程;
(2)过的直线与椭圆交于两点,过平行的直线与椭圆交于两点,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的方程为,过原点作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,如此下去,一般地,过点作斜率为的直线与曲线相交,另一个交点记为,设点).
(1)指出,并求的关系式();
(2)求)的通项公式,并指出点列,向哪一点无限接近?说明理由;
(3)令,数列的前项和为,试比较的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案