(2011•湖北)平面内与两定点A1(﹣a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(1)求曲线C的方程,并讨论C的形状与m值的关系;
(2)当m=﹣1时,对应的曲线为C1;对给定的m∈(﹣1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:解答题
已知圆
的圆心在坐标原点
,且恰好与直线
相切,设点A为圆上一动点,
轴于点
,且动点
满足
,设动点
的轨迹为曲线![]()
(1)求曲线C的方程,
(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的左、右焦点分别为
,上顶点为A,在x轴负半轴上有一点B,满足
三点的圆与直线
相切.
(1)求椭圆C的方程;
(2)过右焦点
作斜率为k的直线
与椭圆C交于M,N两点,线段MN的垂直平分线与x轴相交于点P(m,0),求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的离心率为
,短轴一个端点到右焦点的距离为
.
(1)求椭圆C的方程;
(2)设直线
与椭圆C交于A、B两点,以
弦为直径的圆过坐标原点
,试探讨点
到直线
的距离是否为定值?若是,求出这个定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
,直线
的方程为
,过右焦点
的直线
与椭圆交于异于左顶点
的
两点,直线
,
交直线
分别于点
,
.
(1)当
时,求此时直线
的方程;
(2)试问
,
两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的两个焦点分别为
和
,离心率
.
(1)求椭圆
的方程;
(2)设直线
(
)与椭圆
交于
、
两点,线段
的垂直平分线交
轴于点
,当
变化时,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com