精英家教网 > 高中数学 > 题目详情

(2011•湖北)平面内与两定点A1(﹣a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(1)求曲线C的方程,并讨论C的形状与m值的关系;
(2)当m=﹣1时,对应的曲线为C1;对给定的m∈(﹣1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.

(1)见解析   (2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆经过点,离心率,直线与椭圆交于两点,向量,且
(1)求椭圆的方程;
(2)当直线过椭圆的焦点为半焦距)时,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心在坐标原点,且恰好与直线相切,设点A为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线
(1)求曲线C的方程,
(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线与椭圆相交于两点,点是线段上的一点,且点在直线上.
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆是椭圆的左右焦点,且椭圆经过点.
(1)求该椭圆方程;
(2)过点且倾斜角等于的直线,交椭圆于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左、右焦点分别为,上顶点为A,在x轴负半轴上有一点B,满足三点的圆与直线相切.
(1)求椭圆C的方程;
(2)过右焦点作斜率为k的直线与椭圆C交于M,N两点,线段MN的垂直平分线与x轴相交于点P(m,0),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为,短轴一个端点到右焦点的距离为
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,以弦为直径的圆过坐标原点,试探讨点到直线的距离是否为定值?若是,求出这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆,直线的方程为,过右焦点的直线与椭圆交于异于左顶点两点,直线交直线分别于点
(1)当时,求此时直线的方程;
(2)试问两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点分别为,离心率.
(1)求椭圆的方程;
(2)设直线)与椭圆交于两点,线段 的垂直平分线交轴于点,当变化时,求面积的最大值.

查看答案和解析>>

同步练习册答案