已知直线
与椭圆
相交于
两点,点
是线段
上的一点,
且点
在直线
上.
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线
的对称点在单位圆
上,求椭圆的方程.
(1)
;(2)![]()
解析试题分析:(1)设
、
,由题中的直线方程与椭圆方程联立消去
,得![]()
,由韦达定理得
,进而得到
,因此得
的中点
,且点
在直线
上建立关系得
,进而得离心率
的值;
(2)由(1)的结论,设椭圆的一个焦点
关于直线
的对称点为
,且
被直线
垂直且平分建立方程组,解之得
且
,结合点
在单位圆上,得到关于
的方程,并解得
,由此即可得到椭圆方程.
(1)由
知M是AB的中点,
设A、B两点的坐标分别为![]()
由![]()
,
∴M点的坐标为![]()
又M点的直线l上:![]()
,
(2)由(1)知
,根据对称性,不妨设椭圆的右焦点
关于直线l:
上的对称点为
,
则有
由已知![]()
,
∴所求的椭圆的方程为
考点:椭圆的标准方程及简单的几何性质;两点关于一条直线对称;直线与椭圆的位置关系.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,点
到点
的距离比它到
轴的距离多1,记点
的轨迹为
.
(1)求轨迹为
的方程;
(2)设斜率为
的直线
过定点
,求直线
与轨迹
恰好有一个公共点,两个公共点,三个公共点时
的相应取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)(2011•重庆)如图,椭圆的中心为原点O,离心率e=
,一条准线的方程为x=2
.![]()
(Ⅰ)求该椭圆的标准方程.
(Ⅱ)设动点P满足
,其中M,N是椭圆上的点.直线OM与ON的斜率之积为﹣
.
问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
:
的左顶点为
,直线
交椭圆
于
两点(
上
下),动点
和定点
都在椭圆
上.
(1)求椭圆方程及四边形
的面积.
(2)若四边形
为梯形,求点
的坐标.
(3)若
为实数,
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(
)的离心率为
,点(1,
)在椭圆C上.
(1)求椭圆C的方程;
(2)若椭圆C的两条切线交于点M(4,
),其中
,切点分别是A、B,试利用结论:在椭圆
上的点(
)处的椭圆切线方程是
,证明直线AB恒过椭圆的右焦点
;
(3)试探究
的值是否恒为常数,若是,求出此常数;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图
为椭圆C:![]()
的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率
,
的面积为
.若点
在椭圆C上,则点
称为点M的一个“椭圆”,直线
与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.![]()
(1)求椭圆C的标准方程;
(2)问是否存在过左焦点
的直线
,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2011•湖北)平面内与两定点A1(﹣a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(1)求曲线C的方程,并讨论C的形状与m值的关系;
(2)当m=﹣1时,对应的曲线为C1;对给定的m∈(﹣1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知
,
,
,
分别是椭圆
的四个顶点,△
是一个边长为2的等边三角形,其外接圆为圆
.
(1)求椭圆
及圆
的方程;
(2)若点
是圆
劣弧
上一动点(点
异于端点
,
),直线
分别交线段
,椭圆
于点
,
,直线
与
交于点
.
(ⅰ)求
的最大值;
(ⅱ)试问:
,
两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com