如图,已知
,
,
,
分别是椭圆
的四个顶点,△
是一个边长为2的等边三角形,其外接圆为圆
.
(1)求椭圆
及圆
的方程;
(2)若点
是圆
劣弧
上一动点(点
异于端点
,
),直线
分别交线段
,椭圆
于点
,
,直线
与
交于点
.
(ⅰ)求
的最大值;
(ⅱ)试问:
,
两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.![]()
(1)
,
,(2)(ⅰ)
,(ⅱ)
.
解析试题分析:(1)求椭圆标准方程,只需两个独立条件. 由题意知,
,
,所以
,
,所以椭圆
的方程为
,求圆的方程,有两个选择,一是求圆的标准方程,确定圆心与半径,二是求圆的一般方程,只需代入圆上三个点的坐标.本题两个方法皆简单,如易得圆心
,
,所以圆
的方程为
(2)(ⅰ)本题关键分析出比值
暗示的解题方向,由于点
在
轴上,所以
,因此解题方向为利用斜率分别表示出点
与点
的横坐标. 设直线
的方程为
,与直线
的方程
联立,解得点
,联立
,消去
并整理得,
,解得点
,因此![]()
当且仅当
时,取“=”,所以
的最大值为
.(ⅱ)求出点
的横坐标,分析与点
的横坐标的和是否为常数. 直线
的方程为
,与直线
的方程
联立,解得点
,所以
、
两点的横坐标之和为
.
试题解析:(1)由题意知,
,
,
所以
,
,所以椭圆
的方程为
, 2分
易得圆心
,
,所以圆
的方程为
.4分
(2)解:设直线
的方程为
,
与直线
的方程
联立,解得点
, 6分
联立
,消去
并整理得,
,解得点
,
9分
(ⅰ)![]()
,当且仅当
时,取“=”,
所以
的最大值为
. 12分
(ⅱ)直线![]()
![]()
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
,直线
的方程为
,过右焦点
的直线
与椭圆交于异于左顶点
的
两点,直线
,
交直线
分别于点
,
.
(1)当
时,求此时直线
的方程;
(2)试问
,
两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,其短轴两端点为
.
(1)求椭圆
的方程;
(2)若
是椭圆
上关于
轴对称的两个不同点,直线
与
轴分别交于点
.判断以
为直径的圆是否过点
,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设抛物线
:
的焦点为
,准线为
,过准线
上一点
且斜率为
的直线
交抛物线
于
,
两点,线段
的中点为
,直线
交抛物线
于
,
两点.
(1)求抛物线
的方程及
的取值范围;
(2)是否存在
值,使点
是线段
的中点?若存在,求出
值,若不存在,请说明理由. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知圆
,经过椭圆
的右焦点F及上顶点B,过圆外一点
倾斜角为
的直线
交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的两个焦点分别为
和
,离心率
.
(1)求椭圆
的方程;
(2)设直线
(
)与椭圆
交于
、
两点,线段
的垂直平分线交
轴于点
,当
变化时,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的左、右焦点分别
为
,其上顶点为
已知
是边长为
的正三角形.
(1)求椭圆
的方程;
(2)过点
任作一动直线
交椭圆
于
两点,记
.若在线段
上取一点
,使得
,当直线
运动时,点
在某一定直线上运动,求出该定直线的方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,以原点
为圆心,椭圆的短半轴长为半径的圆与直线
相切。
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
相交于
、
两点,且
,试判断
的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com