如图,已知椭圆
的右焦点为
,点
是椭圆上任意一点,圆
是以
为直径的圆.
(1)若圆
过原点
,求圆
的方程;
(2)写出一个定圆的方程,使得无论点
在椭圆的什么位置,该定圆总与圆
相切,请写出你的探究过程. ![]()
(1)
或
;(2)
.
解析试题分析:(1)因为
是圆
的直径,所以当圆
过原点
时,一定有
,由此可确定点
的位置并进一步求出圆
的标准方程;
(2)设圆M的半径为
,连结
,显然有![]()
根据椭圆的标准方程
知
,
所以![]()
,从而找到符合条件的定圆.
解:(1)解法一:因为圆
过原点
,所以
,所以
是椭圆的短轴顶点,
的坐标是
或
,于是点
的坐标为
或
,
易求圆
的半径为![]()
所以圆
的方程为
或
6分
解法二:设
,因为圆
过原点
,所以![]()
所以
,所以
,所以点![]()
于是点
的坐标为
或
,易求圆的半径![]()
所以圆
的方程为
或
6分
(2)以原点为圆心,5为半径的定圆始终与圆相内切,定圆的方程为
8分
探究过程为:设圆
的半径为
,定圆的半径为
,
因为
,
所以当原点为定圆圆心,半径
时,定圆始终与圆
相内切. (13分)
考点:1、椭圆的定义与标准方程;2、圆的定义与标准方程.
科目:高中数学 来源: 题型:解答题
已知曲线E上任意一点P到两个定点F1(-
,0)和F2(
,0)的距离之和为4.
(1)求曲线E的方程;
(2)设过点(0,-2)的直线l与曲线E交于C、D两点,且
·
=0(O为坐标原点),求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
圆
的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线
过点P且离心率为
.
(1)求
的方程;
(2)椭圆
过点P且与
有相同的焦点,直线
过
的右焦点且与
交于A,B两点,若以线段AB为直径的圆心过点P,求
的方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,点
到点
的距离比它到
轴的距离多1,记点
的轨迹为
.
(1)求轨迹为
的方程
(2)设斜率为
的直线
过定点
,求直线
与轨迹
恰好有一个公共点,两个公共点,三个公共点时
的相应取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:
的焦点为F,直线
与y轴的交点为P,与C的交点为Q,且
.
(1)求C的方程;
(2)过F的直线
与C相交于A,B两点,若AB的垂直平分线
与C相较于M,N两点,且A,M,B,N四点在同一圆上,求
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)(2011•广东)在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.
(1)当点P在l上运动时,求点M的轨迹E的方程;
(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;
(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2011•山东)在平面直角坐标系xOy中,已知椭圆
.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com