精英家教网 > 高中数学 > 题目详情

已知椭圆经过点
(1)求椭圆的方程及其离心率;
(2)过椭圆右焦点的直线(不经过点)与椭圆交于两点,当的平分线为 时,求直线的斜率

(1);(2).

解析试题分析:本题主要考查椭圆的标准方程以及几何性质、直线与椭圆相交问题等基础知识,考查学生的数形结合思想、转化能力、计算能力.第一问,椭圆过点P,说明点P在椭圆上,符合解析式,即可求出,从而得到椭圆的标准方程,通过椭圆的标准方程得到,从而得到离心率;第二问,由第一问得到椭圆右焦点F的坐标,由P、F点坐标可知轴,由题意得,令直线AB的方程与椭圆方程联立,得到A、B坐标,结合P点坐标,得出代入到中,解出直线AB的斜率k的值.
(1)把点代入,可得
故椭圆的方程为,椭圆的离心率为. ……4分
(2)由(1)知:
的平分线为时,由知:轴.
的斜率分别为.所以,的斜率满足……6分
设直线方程为,代入椭圆方程并整理可得,
.      
,则
,则
.……………………8分
所以=
  …………11分
.   .             ……………13分
考点:椭圆的标准方程以及几何性质、直线与椭圆相交问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,已知双曲线的右焦点,点分别在的两条渐近线上,轴,(为坐标原点).

(1)求双曲线的方程;
(2)过上一点的直线与直线相交于点,与直线相交于点,证明点上移动时,恒为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.
(1)若圆过原点,求圆的方程; 
(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右顶点分别为,离心率
(1)求椭圆的方程;
(2)若点为曲线:上任一点(点不同于),直线与直线交于点为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的两个焦点为在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.
(1)如图所示,若,求直线l的方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个焦点为,且离心率为
(1)求椭圆方程;
(2)斜率为的直线过点,且与椭圆交于两点,为直线上的一点,若△为等边三角形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O,椭圆+=1与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程.
(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在,请求出Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案