已知椭圆
经过点
.
(1)求椭圆
的方程及其离心率;
(2)过椭圆右焦点
的直线(不经过点
)与椭圆交于
两点,当
的平分线为
时,求直线
的斜率
.
(1)
,
;(2)
.
解析试题分析:本题主要考查椭圆的标准方程以及几何性质、直线与椭圆相交问题等基础知识,考查学生的数形结合思想、转化能力、计算能力.第一问,椭圆过点P,说明点P在椭圆上,符合解析式,即可求出
,从而得到椭圆的标准方程,通过椭圆的标准方程得到
,
,
,从而得到离心率;第二问,由第一问得到椭圆右焦点F的坐标,由P、F点坐标可知
轴,由题意得
,令直线AB的方程与椭圆方程联立,得到A、B坐标,结合P点坐标,得出
和
代入到
中,解出直线AB的斜率k的值.
(1)把点
代入
,可得
.
故椭圆的方程为![]()
,椭圆的离心率为
. ……4分
(2)由(1)知:
.
当
的平分线为
时,由
和
知:
轴.
记![]()
的斜率分别为
.所以,![]()
的斜率满足
……6分
设直线
方程为
,代入椭圆方程
并整理可得,
.
设
,则![]()
又
,则
,
.……………………8分
所以![]()
=![]()
…………11分
即
.
. ……………13分
考点:椭圆的标准方程以及几何性质、直线与椭圆相交问题.
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,已知双曲线
的右焦点
,点
分别在
的两条渐近线上,
轴,
∥
(
为坐标原点).![]()
(1)求双曲线
的方程;
(2)过
上一点
的直线
与直线
相交于点
,与直线
相交于点
,证明点
在
上移动时,
恒为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的右焦点为
,点
是椭圆上任意一点,圆
是以
为直径的圆.
(1)若圆
过原点
,求圆
的方程;
(2)写出一个定圆的方程,使得无论点
在椭圆的什么位置,该定圆总与圆
相切,请写出你的探究过程. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左右顶点分别为
,离心率
.
(1)求椭圆的方程;
(2)若点
为曲线
:
上任一点(
点不同于
),直线
与直线
交于点
,
为线段
的中点,试判断直线
与曲线
的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
的两个焦点为
、
点
在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为
求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.
(1)如图所示,若
,求直线l的方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的一个焦点为
,且离心率为
.
(1)求椭圆方程;
(2)斜率为
的直线
过点
,且与椭圆交于
两点,
为直线
上的一点,若△
为等边三角形,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系xOy中,已知圆心在第二象限、半径为2
的圆C与直线y=x相切于坐标原点O,椭圆
+
=1与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程.
(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在,请求出Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com