已知椭圆的方程为,其中.
(1)求椭圆形状最圆时的方程;
(2)若椭圆最圆时任意两条互相垂直的切线相交于点,证明:点在一个定圆上.
(1);(2)证明过程详见解析.
解析试题分析:本题主要考查椭圆的标准方程及其几何性质、韦达定理等基础知识,考查学生的分析问题解决问题的能力、转化能力和计算能力.第一问,根据椭圆的标准方程应满足的条件得:,且,则知椭圆的长轴在y轴上,而椭圆形状最圆时e最小,则先得到e的表达式,再根据三角函数的有界性求表达式的最小值,得到取得最小值时的的值,从而得到椭圆的标准方程;第二问,设出交点P的坐标,根据直线的斜率是否存在,分2种情况讨论,当斜率存在时,设出直线方程,与椭圆方程联立,得到关于k的方程,由于两切线垂直,则,利用上述方程的两根之积得到的值,整理出方程形式,再验证当斜率不存在时P点坐标,得到最终结论.
试题解析:(1)根据已知条件有,且,故椭圆的长轴在轴上.
,当且仅当时取等号.
由于椭圆的离心率最小时其形状最圆,故最圆的椭圆方程为. 5分
(2)设交点,过交点的直线与椭圆相切.
(1)当斜率不存在或等于零时,易得点的坐标为. 6分
(2)当斜率存在且非零时,则设斜率为,则直线:,
与椭圆方程联立消,得:.
由相切,,
化简整理得.①
因过椭圆外一点有两条直线与椭圆相切,由已知两切线垂直,故,而为方程①的两根,
故,整理得:.
又也满足上式,
故点的轨迹方程为,即点在定圆上. 13分
考点:椭圆的标准方程及其几何性质、韦达定理.
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)设,过点作直线(不与轴重合)交椭圆于、两点,连结、分别交直线于、两点,试探究直线、的斜率之积是否为定值,若为定值,请求出;若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:,点A、B在抛物线C上.
(1)若直线AB过点M(2p,0),且=4p,求过A,B,O(O为坐标原点)三点的圆的方程;
(2)设直线OA、OB的倾斜角分别为,且,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
巳知椭圆的离心率是.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,已知,,是椭圆上不同的三点,,,在第三象限,线段的中点在直线上.
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点在椭圆上(异于点,,)且直线PB,PC分别交直线OA于,两点,证明为定值并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)已知定点、,动点N满足(O为坐标原点),,,,求点P的轨迹方程.
(2)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点,
(ⅰ)设直线的斜率分别为、,求证:为定值;
(ⅱ)当点运动时,以为直径的圆是否经过定点?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的焦距为,过右焦点和短轴一个端点的直线的斜率为,为坐标原点.
(1)求椭圆的方程.
(2)设斜率为的直线与相交于、两点,记面积的最大值为,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率为,其长轴长与短轴长的和等于6.
(1)求椭圆的方程;
(2)如图,设椭圆的上、下顶点分别为,是椭圆上异于的任意一点,直线分别交轴于点,若直线与过点的圆相切,切点为.证明:线段的长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线E:ax2+by2=1(a>0,b>0),经过点M的直线l与曲线E交于点A、B,且=-2.
(1)若点B的坐标为(0,2),求曲线E的方程;
(2)若a=b=1,求直线AB的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com