巳知椭圆
的离心率是
.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线
,使点C(2,0)关于直线
的对称点在椭圆上,求椭圆的焦距的取值范围.
⑴
;⑵椭圆的焦距的取值范围是
.
解析试题分析:⑴
,
,再将点
的坐标代入椭圆的方程,这样便有三个方程,三者联立,即可求出
,从而得椭圆的方程.⑵显然斜率不存在或斜率等于0时,不可能满足题意.故可设直线l的方程为:
,这样可将点C(2, 0)关于直线l的对称点的坐标用
表示出来,然后代入椭圆的方程,从而得一关于
的方程:
.设
,因此原问题转化为关于t的方程
有正根.根据二次方程根的分布可得
.进而求得椭圆的焦距的取值范围.![]()
试题解析:⑴
,
∵点P(2,1)在椭圆上,∴
5分
⑵依题意,直线l的斜率存在且不为0,则直线l的方程为:
.
设点C(2, 0)关于直线l的对称点为
,则![]()
若点
在椭圆
上,则![]()
设
,因此原问题转化为关于t的方程
有正根.
①当
时,方程一定有正根;
②当
时,则有![]()
∴综上得
.
又椭圆的焦距为
.
故椭圆的焦距的取值范围是(0,4] 13分
考点:1、椭圆的方程;2、直线与椭圆.
科目:高中数学 来源: 题型:解答题
已知椭圆
的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
交于
、
两点,试问,是否存在
轴上的点
,使得对任意的
,
为定值,若存在,求出
点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图已知抛物线
:
过点
,直线
交
于
,
两点,过点
且平行于
轴的直线分别与直线
和
轴相交于点
,
.
(1)求
的值;
(2)是否存在定点
,当直线
过点
时,△
与△
的面积相等?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
抛物线
,直线
过抛物线
的焦点
,交
轴于点
.![]()
(1)求证:
;
(2)过
作抛物线
的切线,切点为
(异于原点),
(i)
是否恒成等差数列,请说明理由;
(ii)
重心的轨迹是什么图形,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
(
)的右焦点
,右顶点
,且
.![]()
(1)求椭圆
的标准方程;
(2)若动直线
:
与椭圆
有且只有一个交点
,且与直线
交于点
,问:是否存在一个定点
,使得
.若存在,求出点
坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的短半轴长为
,动点![]()
在直线
(
为半焦距)上.
(1)求椭圆的标准方程;
(2)求以
为直径且被直线
截得的弦长为
的圆的方程;
(3)设
是椭圆的右焦点,过点
作
的垂线与以
为直径的圆交于点
,
求证:线段
的长为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图;已知椭圆C:
的离心率为
,以椭圆的左顶点T为圆心作圆T:
设圆T与椭圆C交于点M、N.![]()
(1)求椭圆C的方程;
(2)求
的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与
轴交于点R,S,O为坐标原点。求证:
为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com