精英家教网 > 高中数学 > 题目详情

已知椭圆的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆的方程;
(2)已知直线与椭圆交于两点,试问,是否存在轴上的点,使得对任意的为定值,若存在,求出点的坐标,若不存在,说明理由.

(1);(2)存在点使得为定值.

解析试题分析:(1)椭圆的标准方程是,则本题中有,已知三角形的面积为4,说明,这样可以求得;(2)存在性命题的解法都是假设存在,然后想办法求出.下面就是想法列出关于的方程,本题是直线与椭圆相交问题,一般方法是设交点为,把直线方程代入椭圆方程交化简为,则有,而,就可用表示,这个值为定值,即与无关,分析此式可得出结论..
试题解析:(1)设椭圆的短半轴为,半焦距为
,由
解得,则椭圆方程为.     (6分)
(2)由 
由韦达定理得:      

=
==,     (10分)
,即时,为定值,所以,存在点使得为定值(14分).
考点:(1)椭圆的标准方程;(2)直线与椭圆相交问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,椭圆的离心率为轴被曲线截得的线段长等于的长半轴长。

(1)求的方程;
(2)设轴的交点为M,过坐标原点O的直线相交于点A,B,直线MA,MB分别与相交与D,E.
①证明:
②记△MAB,△MDE的面积分别是.问:是否存在直线,使得=?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)设,过点作直线(不与轴重合)交椭圆于两点,连结分别交直线两点,试探究直线的斜率之积是否为定值,若为定值,请求出;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点,长轴的左、右端点分别为,且.
(1)求椭圆的方程;
(2)过焦点斜率为)的直线交椭圆两点,弦的垂直平分线与轴相交于点. 试问椭圆上是否存在点使得四边形为菱形?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线与抛物线(常数)相交于不同的两点,且为定值),线段的中点为,与直线平行的切线的切点为(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).

(1)用表示出点、点的坐标,并证明垂直于轴;
(2)求的面积,证明的面积与无关,只与有关;
(3)小张所在的兴趣小组完成上面两个小题后,小张连,再作与平行的切线,切点分别为,小张马上写出了的面积,由此小张求出了直线与抛物线围成的面积,你认为小张能做到吗?请你说出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C:,点A、B在抛物线C上.

(1)若直线AB过点M(2p,0),且=4p,求过A,B,O(O为坐标原点)三点的圆的方程;
(2)设直线OA、OB的倾斜角分别为,且,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

巳知椭圆的离心率是.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,其长轴长与短轴长的和等于6.

(1)求椭圆的方程;
(2)如图,设椭圆的上、下顶点分别为是椭圆上异于的任意一点,直线分别交轴于点,若直线与过点的圆相切,切点为.证明:线段的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆G:.过点(m,0)作圆的切线l交椭圆G于A,B两点.
(1)求椭圆G的焦点坐标和离心率;
(2)将表示为m的函数,并求的最大值.

查看答案和解析>>

同步练习册答案