精英家教网 > 高中数学 > 题目详情
下列结论:①(cos x)′=sin x;②′=cos;③若y,则y′|x=3
=-;④(e3)′=e3.其中正确的个数为 (  ).
A.0个B.1个
C.2个D.3个
B
(cos x)′=-sin x,①错,sin′=0.②错,′=-,∴y′|x=3=-,③正确,e3为常数,(e3)′=0,④错.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(e为自然对数的底数)
(1)求的最小值;
(2)若对于任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数).
(1)判断曲线在点(1,)处的切线与曲线的公共点个数;
(2)当时,若函数有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-ax-1.
(1)若a=3时,求f(x)的单调区间;
(2)若f(x)在实数集R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)=2x3ax2bx+1的导数为f′(x),若函数yf′(x)
的图象关于直线x=-对称,且f′(1)=0.
①求实数ab的值;②求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

f(x)=(2xa)2,且f′(2)=20,则a=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知的导函数,则的图像是(    )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln x-1.
(1)求函数f(x)的单调区间;
(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式maf(x0)<0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在区间上有极值点,则实数的取值范围是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案