精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln x-1.
(1)求函数f(x)的单调区间;
(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式maf(x0)<0成立,求实数m的取值范围.
(1)单调递增区间是(1,+∞).单调递减区间是(0,1).(2)
(1)f′(x)=x>0.
f′(x)>0,得x>1,因此函数f(x)的单调递增区间是(1,+∞).
f′(x)<0,得0<x<1,因此函数f(x)的单调递减区间是(0,1).
(2)依题意,maf(x)max.
由(1)知,f(x)在x∈[1,e]上是增函数,
f(x)maxf(e)=ln e+-1=.
ma,即ma<0对于任意的a∈(-1,1)恒成立.
解得-m.
m的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求证:时,恒成立;
(2)当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点.
(1)求b的值      (2)求f(2)的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的单调递增区间;
(2)记函数的图象为曲线,设点是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”,试问:函数是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,函数
(1)若,求函数在区间上的最大值;
(2)若,写出函数的单调区间(不必证明);
(3)若存在,使得关于的方程有三个不相等的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列结论:①(cos x)′=sin x;②′=cos;③若y,则y′|x=3
=-;④(e3)′=e3.其中正确的个数为 (  ).
A.0个B.1个
C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(ax2-2xa)·ex.
(1)当a=1时,求函数f(x)的单调区间;
(2)设g(x)=-a-2,h(x)=x2-2x-ln x,若x>1时总有g(x)<h(x),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-x2+ax-a(a∈R).
(1)当a=-3时,求函数f(x)的极值.
(2)若函数f(x)的图象与x轴有且只有一个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)=,其中a为正实数.
(1)当a=时,求f(x)的极值点.
(2)若f(x)为[,]上的单调函数,求a的取值范围.

查看答案和解析>>

同步练习册答案