精英家教网 > 高中数学 > 题目详情
已知正四棱柱ABCD-A1B1C1D1的顶点坐标分别为A(0,0,0),B(2,0,O),D(0,2,0),A1(0,0,5),则C1的坐标为
(2,2,5)
(2,2,5)
分析:根据A,B,C点的坐标,结合底面为四方形,C点坐标等于B,D坐标和减A点坐标,求出C点坐标,再由A,A1两点的坐标关系,求出C1的坐标
解答:解:∵A(0,0,0),B(2,0,O),D(0,2,0),
∴C点坐标为(2,2,0)
又∵A1(0,0,5),
∴C1的坐标为(2,2,5)
故答案为:(2,2,5)
点评:本题考查的知识点是空间直角坐标系,其中根据平行四边形对角顶点的坐标和相等,求出C点坐标是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知正四棱柱ABCD-A1B1C1D1的底面边长为1,点E在棱AA1上,A1C∥平面EBD,截面EBD的面积为
2
2

(1)A1C与底面ABCD所成角的大小;
(2)若AC与BD的交点为M,点T在CC1上,且MT⊥BE,求MT的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱柱ABCD-A1B1C1D1的底面ABCD边长为1,高AA1=
2
,它的八个顶点都在同一球面上,那么球的半径是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正四棱柱ABCD-A1B1C1D1与它的侧视图(或称左视图),E是DD1上一点,AE⊥B1C.
(1)求证AE⊥平面B1CD;
(2)求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州模拟)已知正四棱柱ABCD-A1B1C1D1,AB=BC=1,AA1=2,点E为CC1的中点,点F为BD1的中点.
(Ⅰ)证明:EF⊥BD1
(Ⅱ)求四面体D1-BDE的体积.

查看答案和解析>>

同步练习册答案