精英家教网 > 高中数学 > 题目详情

一条变动的直线L与椭圆+=1交于P、Q两点,M是L上的动点,满足关系|MP|·|MQ|=2.若直线L在变动过程中始终保持其斜率等于1.求动点M的轨迹方程,并说明曲线的形状.

 

【答案】

x2+2y2=1.

【解析】

试题分析:设动点M(x,y),动直线L:y=x+m,并设P(x1,y1),Q(x2,y2)是方程组的解,消去y,得3x2+4mx+2m2-4=0,其中Δ=16m2-12(2m2-4)>0,∴-<m<,且x1+x2=-,x1x2=,又∵|MP|=|x-x1|,|MQ|=|x-x2|.由|MP||MQ|=2,得|x-x1||x-x2|=1,也即

|x2-(x1+x2)x+x1x2|=1,于是有∵m=y-x,∴|x2+2y2-4|=3.由x2+2y2-4=3,得椭圆夹在直线间两段弧,且不包含端点.由x2+2y2-4=-3,得椭圆x2+2y2=1.

考点:本题主要考查直线和圆锥曲线的位置关系、轨迹方程的求法。

点评:解答中从联立方程组出发,运用韦达定理,体现了整体观,是解析几何问题中的常见类型。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆O:x2+y2=1,直线l:y=kx+b(b>0)是圆的一条切线,且l与椭圆
x2
2
+y2=1
交于不同的两点A、B.
(1)若△AOB的面积等于
2
3
,求直线l的方程;
(2)设△AOB的面积为S,且满足
6
4
≤S≤
2
6
7
,求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆O:x2+y2=1,直线l:y=kx+b(k>0,b>0)是圆的一条切线,且l与椭圆
x2
2
+y2=1
交于不同的两点A,B.
(1)若弦AB的长为
4
3
,求直线l的方程;
(2)当直线l满足条件(1)时,求
OA
OB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两个焦点分别是F1(0,-2
2
),F2(0,2
2
)
,离心率e=
2
2
3

(1)求椭圆的方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M,N,且线段MN中点的横坐标为-
1
2
,求直线l的倾斜角的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)已知椭圆W的中心在原点,焦点在x轴上,离心率为
6
3
,两条准线间的距离为6,椭圆的左焦点为F,过左焦点与x轴的交点M任作一条斜率不为零的直线l与椭圆W交于不同的两点A、B,点A关于x轴的对称点为C.
(1)求椭圆W的方程;
(2)求证:
CF
FB
(λ∈R)

查看答案和解析>>

同步练习册答案