【题目】某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:
组别 | 频数 | 频率 |
145.5~149.5 | 8 | 0.16 |
149.5~153.5 | 6 | 0.12 |
153.5~157.5 | 14 | 0.28 |
157.5~161.5 | 10 | 0.20 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | ||
合计 |
(1)求出表中字母所对应的数值;
(2)在给出的直角坐标系中画出频率分布直方图;
(3)估计该校高一女生身高在149.5~165.5范围内有多少人?
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点,焦点在轴上的椭圆,离心率为且过点,过定点的动直线与该椭圆相交于、两点.
(1)若线段中点的横坐标是,求直线的方程;
(2)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是圆上任意一点(是圆心),点与点关于原点对称.线段的中垂线分别与交于两点.
(1)求点的轨迹的方程;
(2)直线经过,与抛物线交于两点,与交于两点.当以为直径的圆经过时,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
将圆上每一点的纵坐标保持不变,横坐标变为原来的2倍得到曲线.
(1)写出曲线的参数方程;
(2)以坐标原点为极点, 轴正半轴为极轴坐标建立极坐标系,已知直线的极坐标方程为,若分别为曲线和直线上的一点,求的最近距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
将圆上每一点的纵坐标保持不变,横坐标变为原来的2倍得到曲线.
(1)写出曲线的参数方程;
(2)以坐标原点为极点,轴正半轴为极轴坐标建立极坐标系,已知直线的极坐标方程为,若分别为曲线和直线上的一点,求的最近距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分,规定满意度不低于98分,则评价该教师为“优秀”,现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶);
(1)指出这组数据的众数和中位数;
(2)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;
(3)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记表示抽到评价该教师为“优秀”的人数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地为弘扬中国传统文化举办“传统文化常识问答活动”,随机对该市岁的人群抽取一个容量为的样本,并将样本数据分成五组: ,再将其按从左到右的顺序分别编号为第组,第组,…,第组,绘制了样本的频率分布直方图,并对回答问题情况进行统计后,结果如下表所示.
组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的比例 |
第组 |
| ||
第组 |
| ||
第组 |
| ||
第组 |
| ||
第组 |
|
⑴分别求出, 的值;
⑵从组回答正确的人中用分层抽样的方法抽取人,则第组每组应各抽取多少人?
⑶在⑵的前提下,决定在所抽取的人中随机抽取人颁发幸运奖,求所抽取的人中第组至少有人获得幸运奖的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com