【题目】已知点
是圆
上任意一点(
是圆心),点
与点
关于原点对称.线段
的中垂线
分别与
交于
两点.
(1)求点
的轨迹
的方程;
(2)直线经过
,与抛物线
交于
两点,与
交于
两点.当以
为直径的圆经过
时,求
.
【答案】(1)
;(2)
.
【解析】
试题分析:(1)根据中垂线的性质,
,这样
,转化为椭圆的定义,根据定义写出椭圆方程;(2)设直线方程,斜率存在时
和椭圆方程联立,利用韦达定理写出根与系数的关系,然后根据以
为直径的圆经过
时,有
,代入坐标关系,最后根据直线方程,根据根与系数的关系求
,最后代入抛物线的焦点弦长公式
.
试题解析:解:(I)由题意得,F1(﹣1,0),F2(1,0),圆F1的半径为4,且|MF2|=|MP|,
从而|MF1|+|MF2|=|MF1|+|MP|=|PF1|=4>|F1F2|,
∴点M的轨迹是以F1,F2为焦点的椭圆
其中长轴2a=4,得到a=2,焦距2c=2,则短半轴b=
,
∴椭圆方程为:![]()
(Ⅱ)当直线l 与x轴垂直时,B1(1,
),B2(1,﹣
),又F1(﹣1,0),
此时
,所以以B1B2为直径的圆不经过F1.不满足条件.
当直线l 不与x轴垂直时,设L:y=k(x﹣1)
由
即(3+4k2)x2﹣8k2x+4k2﹣12=0,
因为焦点在椭圆内部,所以恒有两个交点.
设B1(x1,y1),B2(x2,y2),则:x1+x2=
,x1x2=
,
因为以B1B2为直径的圆经过F1,所以
,又F1(﹣1,0)
所以(﹣1﹣x1)(﹣1﹣x2)+y1y2=0,即(1+k2)x1x2+(1﹣k2)(x1+x2)+1+k2=0
所以解得k2=
,
由
得k2x2﹣(2k2+4)x+k2=0
因为直线l 与抛物线有两个交点,所以k≠0,
设A1(x3,y3),A2(x4,y4),则:
,x3x4=1
所以
.
科目:高中数学 来源: 题型:
【题目】某公司过去五个月的广告费支出
与销售额
(单位:万元)之间有下列对应数据:
| 2 | 4 | 5 | 6 | 8 |
|
| 40 | 60 | 50 | 70 |
工作人员不慎将表格中
的第一个数据丢失.已知
对
呈线性相关关系,且回归方程为
,则下列说法:①销售额
与广告费支出
正相关;②丢失的数据(表中
处)为30;③该公司广告费支出每增加1万元,销售额一定增加
万元;④若该公司下月广告投入8万元,则销售
额为70万元.其中,正确说法有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某班学生的会考合格率,要从该班70人中选30人进行考察分析,则70人的会考成绩的全体是______,样本是______,样本量是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于简单随机抽样,下列说法正确的是( )
①它要求被抽取样本的总体的个体数有限;
②它是从总体中逐个进行抽取的,在实践中操作起来也比较方便;
③它是一种不放回抽样;
④它是一种等可能抽样,在整个抽样过程中,每个个体被抽到的机会相等,从而保证了这种抽样方法的公平性.
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是数列
的前
项和,且满足
,等差数列
的前
项和为
,且
,
.
(Ⅰ)求数列
与
的通项公式;
(Ⅱ)若数列
的通项公式为
,问是否存在互不相等的正整数
,
,
使得
,
,
成等差数列,且
,
,
成等比数列?若存在,求出
,
,
;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在复平面内,复数3-4i,i(2+i)对应的点分别是A,B,则线段AB的中点C对应的复数为( )
A.-2+2iB.2-2i
C.-1+iD.1-i
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市有
三所高校,其学生会学习部有“干事”人数分别为
,现采用分层抽样的方法从这些“干事”中抽取
名进行“大学生学习部活动现状”调查.
(1)求应从
这三所高校中分别抽取的“干事”人数;
(2)若从抽取的
名干事中随机选两名干事,求选出的
名干事来自同一所高校的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:
组别 | 频数 | 频率 |
145.5~149.5 | 8 | 0.16 |
149.5~153.5 | 6 | 0.12 |
153.5~157.5 | 14 | 0.28 |
157.5~161.5 | 10 | 0.20 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 |
|
|
合计 |
|
|
(1)求出表中字母
所对应的数值;
(2)在给出的直角坐标系中画出频率分布直方图;
(3)估计该校高一女生身高在149.5~165.5
范围内有多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A. 空间不同的三点确定一个平面
B. 空间两两相交的三条直线确定一个平面
C. 空间有三个角为直角的四边形一定是平面图形
D. 和同一条直线相交的三条平行直线一定在同一平面内
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com