精英家教网 > 高中数学 > 题目详情
已知f(x)=x2-alnx在(1,2]上是增函数,g(x)=x-a
x
在(0,1)上是减函数.
(1)求a的值;
(2)设函数φ(x)=2bx-
1
x2
在(0,1]上是增函数,且对于(0,1]内的任意两个变量s,t,恒有f(s)≥φ(t)成立,求实数b的取值范围;
(3)设h(x)=f′(x)-g(x)-2
x
+
3
x
,求证:[h(x)]n+2≥h(xn)+2n(n∈N*).
(1)f′(x)=2x-
a
x
,依题意,当x∈(1,2]时,f'(x)≥0恒成立,即a≤(2x2min?a≤2.g′(x)=1-
a
2
x
,当x∈(0,1)时,g'(x)≤0恒成立,即a≥2,所以a=2.…(5分)
(2)f′(x)=2x-
2
x
=
2(x+1)(x-1)
x
,所以f(x)在(0,1]上是减函数,最小值是f(1)=1.φ(x)=2bx-
1
x2
在(0,1]上是增函数,即φ′(x)=2b+
2
x3
≥0
恒成立,得b≥-1,且φ(x)的最大值是φ(1)=2b-1,
由已知得1≥2b-1?b≤1,所以b的取值范围是[-1,1].…(5分)
(3)h(x)=f′(x)-g(x)-2
x
+
3
x
=…=x+
1
x

n=1时不等式左右相等,得证;
n≥2时,[h(x)]n-h(xn)=(x+
1
x
)n-(xn+
1
xn
)=
C1n
xn-2+
C2n
xn-4+…+
Cn-1n
x2-n
=
1
2
[
C1n
(xn-2+x2-n)+
C2n
(xn-4+x4-n)+…+
Cn-1n
(x2-n+xn-2)]≥
C1n
+
C2n
+…+
Cn-1n
=2n-2

所以[h(x)]n+2≥h(xn)+2n(n∈N*)成立.…(5分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+b(a,b∈R的定义域为[-1,1].
(1)记|f(x)|的最大值为M,求证:M≥
1
2
.
(2)求出(1)中的M=
1
2
时,f(x)
的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+x+1,则f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2x,数列{an}满足a1=3,an+1=f′(an)-n-1,数列{bn}满足b1=2,bn+1=f(bn).
(1)求证:数列{an-n}为等比数列;
(2)令cn=
1
an-n-1
,求证:c2+c3+…+cn
2
3

(3)求证:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)确定k的值;
(2)求f(x)+
9f(x)
的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>

同步练习册答案