精英家教网 > 高中数学 > 题目详情
函数f(x)满足:f(3x+y)=3f(x)+f(y)对任意的x,y∈R均成立,且当x>0时,f(x)<0.
(I)求证:f(4x)=4f(x),f(3x)=3f(x);
(II)判断函数f(x)在(-∞,+∞)上的单调性并证明;
(III)若f(8)=-2,解不等式:f(log2
x-2
x2
)+12f(log24
x
)<-
1
2
分析:(I)使用赋值法,先令y=x,得f(4x)=4f(x),再令x=y=0,得f(0)=0,最后令y=0,得f(3x)=3f(x)
(II)利用函数单调性的定义以及已知抽象表达式,x>0时,f(x)<0.即可证明f(x)在(-∞,+∞)上是减函数
(III)先利用抽象表达式得f(2)=-
1
2
,再利用对数运算性质及函数的单调性,将不等式转化为对数不等式组,解之即可
解答:解:(I)证明:令y=x,则f(4x)=4f(x)
令x=y=0,则f(0)=0
令y=0,则f(3x)=3f(x)
(II)解:f(x)在(-∞,+∞)上是减函数,以下证明:
任设x1,x2∈(-∞,+∞),且x1>x2,则
f(x1)-f(x2)=f(
x1-x2
3
×3+x2)-f(x2)=3f(
x1-x2
3

∵x1-x2>0
∴f(
x1-x2
3
)<0
即f(x1)-f(x2)<0,即f(x1)<f(x2
∴f(x)在(-∞,+∞)上是减函数
(III)解:∵f(8)=-2
∴4f(2)=2,∴f(2)=-
1
2

12f(log2
4x
)=3f(4log2
4x
)=3f(log2x)
f(log2
x-2
x2
)+12f(log24
x
)
=f(log2
x-2
x2
)+3f(log2x )

=f(log2
x-2
x2
+3log2x  )
=f(log2[x(x-2)])
f(log2
x-2
x2
)+12f(log24
x
)<-
1
2
?f(log2[x(x-2)])<f(2)
?
x>0
log2[x(x-2)]>
x-2>0
2
?
x>2
x(x-2)>4
?x>1+
5

∴不等式的解集为x>1+
5
点评:本题综合考查了抽象表达式的意义和作用,函数单调性的定义及证明,利用函数的单调性解不等式的技巧
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)=f(π-x),且当x∈(-
π
2
π
2
)时,f(x)=x+sinx,则(  )
A、f(1)<f(2)<f(3)
B、f(2)<f(3)<f(1)
C、f(3)<f(2)<f(1)
D、f(3)<f(1)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)满足(1)当m,n∈R时,f(m+n)=f(m)•f(n);(2)f(0)≠0;(3)当x<0时,f(x)>1,则在下列结论中:
①f(a)•f(-a)=1;
②f(x)在R上是递减函数;
③存在x0,使f(x0)<0;
④若f(2)=
2
,则f(
1
4
)=
1
4
,f(
1
6
)=
1
6

正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州二模)定义在R上的函数f(x)满足:f(x+y)=f(x)f(y),且当x>0时,f(x)>1.
(1)求f(0)的值,并证明f(x)是定义域上的增函数:
(2)数列{an}满足a1=a≠0,f(an+1)=f(aan)f(a-1)(n=1,2,3,…),求数列{an}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在实数集上函数f(x)满足:f(x+1)+f(-x-1)=0,f(x+2)=f(-x),且当0≤x≤1时,f(x)=3x-1,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•临沂二模)在R上的可导函数f(x)满足:f(0)=0,xf'(x)>0,则
①f(-2)<f(-1);
②f(x)不可能是奇函数;
③函数y=xf(x)在R上为增函数;
④存在区间[a,b],对任意x1,x2∈[a,b],都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2
成立.
其中正确命题的序号为(将所有正确命题的序号都填上)
②③④
②③④

查看答案和解析>>

同步练习册答案