分析 (1)求导得f'(x)=$\frac{1+2a{x}^{2}}{x}$,对a进行分类讨论,然后解不等式,即可分别求出单调区间;
(2)构造新函数h(x)=m(ex-e)-(lnx+x2-1),利用转化思想,将条件转化为对于任意的x∈(1,+∞),h(x)>0恒成立,h'(x)=mex-($\frac{1}{x}+2x$),则h'(1)=me-3.若h'(1)<0,存在x∈(1,+∞),使得h(x)<0,不符合条件;若h'(1)≥0,则h'(x)≥$\frac{3}{e}•{e}^{x}$-$\frac{1}{x}$-2x,利用导数可判断φ(x)=$\frac{3}{e}•{e}^{x}$-$\frac{1}{x}$-2x>0在(1,+∞)上恒成立,即h'(x)>0恒成立,则h(x)在(1,+∞)上单调递增,从而h(x)>h(1)=0恒成立,故m的取值范围为[$\frac{3}{e}$,+∞).
解答 解:(1)易知f(x)的定义域为(0,+∞),
f'(x)=$\frac{1}{x}+2ax$=$\frac{1+2a{x}^{2}}{x}$
a≥0时,f'(x)>0恒成立,故f(x)的单调增区间为(0,+∞),无单调减区间;
a<0时,由f'(x)>0,得0<x<$\frac{1}{\sqrt{-2a}}$;由f'(x)<0,得x>$\frac{1}{\sqrt{-2a}}$,
故f(x)的单调增区间为(0,$\frac{1}{\sqrt{-2a}}$),单调减区间为($\frac{1}{\sqrt{-2a}}$,+∞);
(2)a=1时,f(x)=lnx+x2-1
记h(x)=mg(x)-f(x)=m(ex-e)-(lnx+x2-1),x∈(1,+∞),则h(1)=0,
∵对于任意的x∈(1,+∞),mg(x)>f(x)恒成立,
∴对于任意的x∈(1,+∞),h(x)>0恒成立,
h'(x)=mex-($\frac{1}{x}+2x$),则h'(1)=me-3
若h'(1)<0,即m<$\frac{3}{e}$,则存在x0∈(1,+∞),使得x∈(1,x0)时,h'(x)<0,即h(x)在(1,x0)上单调递减,
此时h(x)<h(1)=0,不符合条件;
若h'(1)≥0,即m≥$\frac{3}{e}$,则h'(x)≥$\frac{3}{e}•{e}^{x}$-$\frac{1}{x}$-2x,
令φ(x)=$\frac{3}{e}•{e}^{x}-\frac{1}{x}-2x$(x>1),
∵φ'(x)=$\frac{3}{e}•{e}^{x}+\frac{1}{{x}^{2}}-2$>$\frac{3}{e}•{e}^{x}-2$>0,
∴φ(x)在(1,+∞)上单调递增,
∴φ(x)>φ(1)=0,即h'(x)≥φ(x)>0,
∴h(x)在(1,+∞)上单调递增,
∴h(x)>h(1)=0,即对于任意的x∈(1,+∞),h(x)>0恒成立,
综上可得,m≥$\frac{3}{e}$.
点评 本题考查了利用导数求函数的单调区间,还考查了不等式恒成立问题的基本思路,一般是转化为函数的最值问题求解,再利用导数研究函的数最值,同时要注意对参数进行分类讨论.
科目:高中数学 来源: 题型:选择题
| A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$]k∈Z | B. | [kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$]k∈Z | ||
| C. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$]k∈Z | D. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,-1) | B. | (-∞,-2)∪(-1,+∞) | C. | $(-\root{3}{{\frac{3}{2}}},-1)$ | D. | $(-∞,-\root{3}{{\frac{3}{2}}})∪(-1,+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -1 | C. | -6 | D. | -18 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com