精英家教网 > 高中数学 > 题目详情
1.已知三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,AB=2,SA=SB=SC=2,则三棱锥的外接球的球心到平面ABC的距离是$\frac{\sqrt{3}}{3}$.

分析 据三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC,可得S在面ABC上的射影为AB中点H,SH⊥平面ABC,在面SHC内作SC的垂直平分线MO与SH交于O,则O为SABC的外接球球心,OH为O与平面ABC的距离,由此可得结论.

解答 解:∵三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC,
∴S在面ABC上的射影为AB中点H,∴SH⊥平面ABC.
∴SH上任意一点到A、B、C的距离相等.
∵SH=$\sqrt{3}$,CH=1,在面SHC内作SC的垂直平分线MO与SH交于O,
则O为SABC的外接球球心.
∵SC=2,
∴SM=1,∠OSM=30°,
∴SO=$\frac{2\sqrt{3}}{3}$,∴OH=$\frac{\sqrt{3}}{3}$,即为O与平面ABC的距离.
故答案为$\frac{\sqrt{3}}{3}$.

点评 本题考查点到面的距离的计算,考查学生分析解决问题的能力,确定OH是O与平面ABC的距离是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+ax2-1,g(x)=ex-e.
(1)讨论f(x)的单调区间;
(2)若a=1,且对于任意的x∈(1,+∞),mg(x)>f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.命题“?x0∈R,x02+2x0-3>0”的否定形式为?x∈R,x2+2x-3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等差数列{an}的前7项和为14,则${e^{a_2}}•{e^{a_3}}•{e^{a_5}}•{e^{a_6}}$=(  )
A.e2B.e4C.e8D.e16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在数列{an}中,an+1=an+a(n∈N*,a为常数),若平面上的三个不共线的非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$满足$\overrightarrow{OC}$=a1$\overrightarrow{OA}$+a2014$\overrightarrow{OB}$,A,B,C三点共线且该直线不过O点,则S2014等于(  )
A.1007B.1006C.2010D.2012

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知各项为正的等比数列{an}中,a3与a2015的等比中项为2$\sqrt{2}$,则2a4+a2014的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足不等式组$\left\{\begin{array}{l}2x-y+2≥0\\ x-4y+1≤0\\ x+y-2≤0\end{array}\right.$,则z=3|x|+y的最小值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.△ABC的三边长分别是a,b,c,且a=1,B=45°,S△ABC=2,则△ABC的外接圆的面积为(  )
A.25πB.C.$\frac{25π}{2}$D.$\frac{5π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将函数f(x)=sinωx(ω>0)的图象向右平移$\frac{π}{4}$个单位后得到函数g(x)的图象,若对于满足|f(x1)-g(x2)|=2的x1,x2,有|x1-x2|min=$\frac{π}{4}$,则f($\frac{π}{4}$)的值为1.

查看答案和解析>>

同步练习册答案