分析 据三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC,可得S在面ABC上的射影为AB中点H,SH⊥平面ABC,在面SHC内作SC的垂直平分线MO与SH交于O,则O为SABC的外接球球心,OH为O与平面ABC的距离,由此可得结论.
解答 解:∵三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC,
∴S在面ABC上的射影为AB中点H,∴SH⊥平面ABC.![]()
∴SH上任意一点到A、B、C的距离相等.
∵SH=$\sqrt{3}$,CH=1,在面SHC内作SC的垂直平分线MO与SH交于O,
则O为SABC的外接球球心.
∵SC=2,
∴SM=1,∠OSM=30°,
∴SO=$\frac{2\sqrt{3}}{3}$,∴OH=$\frac{\sqrt{3}}{3}$,即为O与平面ABC的距离.
故答案为$\frac{\sqrt{3}}{3}$.
点评 本题考查点到面的距离的计算,考查学生分析解决问题的能力,确定OH是O与平面ABC的距离是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e2 | B. | e4 | C. | e8 | D. | e16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1007 | B. | 1006 | C. | 2010 | D. | 2012 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 25π | B. | 5π | C. | $\frac{25π}{2}$ | D. | $\frac{5π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com