精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1,AC⊥BC,AC=BC=BB1,点D是BC的中点.
(I) 求证:A1C平面AB1D;
(Ⅱ)判断在线段B1B上是否存在一点M,使得A1M⊥B1D?若存在,求出
B1M
B1B
的值;若不存在,请说明理由.
精英家教网

精英家教网
证明:(I)取B1C1的中点E,连接A1E,EC,则A1E
.
AD,EC
.
B1D,A1E∩EC=E,B1D∩AD=D,
∴平面A1EC平面AB1D,A1C?平面A1EC,
∴A1C平面AB1D;
(Ⅱ)直三棱柱ABC-A1B1C1,AC⊥BC,故可以C为坐标原点,CA为x轴,CB为y轴,CC1为z轴建立空间直角坐标系,不妨设AC=BC=BB1=1,点D是BC的中点,
则A1(1,0,1),D(0,
1
2
,0),B1(0,1,1),设M(0,1,h),
A1M
=(-1,1,h-1),
B1D
=(0,-
1
2
,-1),
∵A1M⊥B1D,
A1M
B1D
=-1×0+1×(-
1
2
)+(h-1)×1=0,
∴h=
1
2

∴M为所在线段中点,
B1M
B1B
=
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案