精英家教网 > 高中数学 > 题目详情

已知定义域为的函数是奇函数.
(1)求的值;
(2)判断函数的单调性,并证明.

(1);(2)减函数,证明详见解析;

解析试题分析:(1)因为是奇函数,且定义域为,可由列式求出的值,但要注意只是本题中的是奇函数的必要条件,然后还要验证充分性;(2)判断函数的单调性在解答题中一般利用增函数或减函数的定义,或利用导函数的符号判断.
试题解析:(1)因为是奇函数,且定义域为,所以,   2分
所以,所以              4分
,知
经验证,当时,是奇函数,所以                  7分
(2)函数上为减函数                       9分
证明:法一:由(1)知
,则             12分

函数上为减函数          14分
法二:由(1)知
,                            12分

函数上为减函数.              14分
考点:函数的奇偶性、函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中常数满足
(1)若,判断函数的单调性;
(2)若,求时的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)= 是奇函数
(1)求实数m的值
(2)若函数f(x)在区间上单调递增,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)求实数的值;
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为
(1)求
(2)当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数在区间上的最大值、最小值分别是,集合
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,记,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A、B、C是直线上的不同三点,O是外一点,向量满足,记
(1)求函数的解析式;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(1)时,求函数的单调区间;
(2)时,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案