精英家教网 > 高中数学 > 题目详情
(2013•泰安二模)某艺校在一天的5节课中随机安排语文、数学、外语三门文化课和其他两门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为(  )
分析:把5门课全排列得到5门课一天的所有排法种数,分类求出相邻两节文化课之间最多间隔1节艺术课的排法种数,然后利用古典概型概率计算公式求概率.
解答:解:一天中5节课的安排情况共有
A
5
5
=120
种.
相邻两节文化课之间最多间隔1节艺术课的排法分3类.
(1)语文、数学、外语三门文化课之间没有艺术课,可把3节文化课捆绑在一起与2门艺术课全排列,排法种数为
A
3
3
A
3
3
=36
种;
(2)语文、数学、外语三门文化课全排列,之间产生3个空,有两门之间插1节艺术课,另两门文化课相邻,排法种数为
A
3
3
C
1
2
A
1
2
A
1
2
=48
种;
(3)语文、数学、外语三门文化课每两门之间插1节艺术课,排法种数为
A
3
3
A
2
2
=12
种.
故在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为
36+48+12
120
=
4
5

故选A.
点评:本题考查了古典概型及其概率计算公式,考查了捆绑法和插空法,考查了分类讨论的数学思想方法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•泰安二模)若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰安二模)已知等差数列{an}的首项a1=3,且公差d≠0,其前n项和为Sn,且a1,a4,a13分别是等比数列{bn}的b2,b3,b4
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)证明
1
3
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰安二模)在△ABC中,角A,B,C的对边分别是a,b,c,若sinB=2sinC,a2-b2=
3
2
bc
,则A=
2
3
π
2
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰安二模)下列选项中,说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰安二模)过点P(1,-2)的直线l将圆x2+y2-4x+6y-3=0截成两段弧,若其中劣弧的长度最短,那么直线l的方程为
x-y-3=0
x-y-3=0

查看答案和解析>>

同步练习册答案