ÔÚÇø¼äDÉÏ£¬Èç¹ûº¯Êýf£¨x£©ÎªÔöº¯Êý£¬¶øº¯Êý
1
x
f(x)
Ϊ¼õº¯Êý£¬Ôò³Æº¯Êýf£¨x£©Îª¡°ÈõÔöº¯Êý¡±£®ÒÑÖªº¯Êýf£¨x£©=1-
1
1+x
£®
£¨1£©ÅжϺ¯Êýf£¨x£©ÔÚÇø¼ä£¨0£¬1]ÉÏÊÇ·ñΪ¡°ÈõÔöº¯Êý¡±£»
£¨2£©Éèx1£¬x2¡Ê[0£¬+¡Þ£©£¬ÇÒx1¡Ùx2£¬Ö¤Ã÷£º|f£¨x2£©-f£¨x1£©|£¼
1
2
|x1-x2|
£»
£¨3£©µ±x¡Ê[0£¬1]ʱ£¬²»µÈʽ1-ax¡Ü
1
1+x
¡Ü1-bxºã³ÉÁ¢£¬ÇóʵÊýa£¬bµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©¸ù¾ÝÈõÔöº¯ÊýµÄ¶¨Ò壬ֻÐèÖ¤Ã÷º¯Êýf£¨x£©ÔÚÇø¼ä£¨0£¬1]ÉÏÊÇÔöº¯Êý£¬¶øº¯Êý
1
x
f(x)
Ϊ¼õº¯Êý£¬¼´¿É£»
£¨2£©Ö¤·¨1£ºÒªÖ¤|f£¨x2£©-f£¨x1£©|£¼
1
2
|x1-x2|
£¬²»·ÁÉè0¡Üx1£¼x2£¬¹¹Ô캯Êýg£¨x£©=f£¨x£©-
1
2
x
£¬ÀûÓõ¼ÊýÖ¤Ã÷¸Ãº¯ÊýÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝ¼õ¼´¿ÉÖ¤Ã÷½áÂÛ£»
Ö¤·¨2£º°Ñf£¨x£©=1-
1
1+x
´úÈë|f£¨x2£©-f£¨x1£©|£¬ÀûÓ÷ÖĸÓÐÀí»¯£¬¼´¿ÉÖ¤Ã÷½áÂÛ£»
£¨3£©Òª½â£©µ±x¡Ê[0£¬1]ʱ£¬²»µÈʽ1-ax¡Ü
1
1+x
¡Ü1-bxºã³ÉÁ¢£¬ÀûÓ÷ÖÀë²ÎÊýת»¯Îªµ±x¡Ê£¨0£¬1]ʱ£¬µÈ¼ÛÓÚ
a¡Ý
1
x
f(x)
b¡Ü
1
x
f(x)
ºã³ÉÁ¢£¬¼´¿ÉÇóµÃʵÊýa£¬bµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©ÏÔÈ»f£¨x£©ÔÚÇø¼äÉÏΪÔöº¯Êý£¨0£¬1]£¬
ÒòΪ
1
x
f(x)
=
1
x
(1-
1
1+x
)
=
1
x
1+x
-1
1+x
=
1
x
1+x
-1
1+x
=
1
x
x
1+x
(
1+x
+1)
=
1
1+x+
1+x
£¬
ËùÒÔ
1
x
f(x)
ÔÚÇø¼ä£¨0£¬1]ÉÏΪ¼õº¯Êý£®
ËùÒÔf£¨x£©ÔÚÇø¼ä£¨0£¬1]ÉÏΪ¡°ÈõÔöº¯Êý¡±£®

£¨2£©Ö¤·¨1£ºÒªÖ¤|f£¨x2£©-f£¨x1£©|£¼
1
2
|x1-x2|
£¬²»·ÁÉè0¡Üx1£¼x2£¬
ÓÉf£¨x£©=1-
1
1+x
ÔÚ[0£¬+¡Þ£©µ¥µ÷µÝÔö£¬
µÃf£¨x2£©£¾f£¨x1£©£¬
ÄÇôֻҪ֤f£¨x2£©-f£¨x1£©£¼
1
2
(x2-x1)
£¬
¼´Ö¤f£¨x2£©-
1
2
x2
£¼f£¨x1£©-
1
2
x1
£®
Áîg£¨x£©=f£¨x£©-
1
2
x
£¬ÔòÎÊÌâת»¯ÎªÖ»ÒªÖ¤Ã÷g£¨x£©=f£¨x£©-
1
2
x
ÔÚ[0£¬+¡Þ£©µ¥µ÷µÝ¼õ¼´¿É£®
ÊÂʵÉÏ£¬g£¨x£©=f£¨x£©-
1
2
x
=1-
1
1+x
-
1
2
x
£¬
µ±x¡Ê[0£¬+¡Þ£©Ê±£¬g¡ä£¨x£©=
1
2
1+x
-
1
2
¡Ü0£¬
ËùÒÔg£¨x£©=f£¨x£©-
1
2
x
ÔÚ[0£¬+¡Þ£©µ¥µ÷µÝ¼õ£¬
¹ÊÃüÌâ³ÉÁ¢£®
Ö¤·¨2£º|f£¨x2£©-f£¨x1£©|=|
1
1+x2
-
1
1+x1
|
=
|
1+x1
-
1+x2
|
1+x2
1+x1

=
|x1-x2|
1+x2
1+x1
(
1+x1
+
1+x2
)
£¬
ÒòΪx1£¬x2¡Ê[0£¬+¡Þ£©£¬ÇÒx1¡Ùx2£¬
1+x2
1+x1
(
1+x1
+
1+x2
)
£¾2£¬
ËùÒÔ|f£¨x2£©-f£¨x1£©|£¼
1
2
|x1-x2|
£®

£¨3£©µ±x¡Ê[0£¬1]ʱ£¬²»µÈʽ1-ax¡Ü
1
1+x
¡Ü1-bxºã³ÉÁ¢£®
µ±x=0ʱ£¬²»µÈʽÏÔÈ»³ÉÁ¢£®
µ±x¡Ê£¨0£¬1]ʱ£¬µÈ¼ÛÓÚ
a¡Ý
1
x
f(x)
b¡Ü
1
x
f(x)
ºã³ÉÁ¢£®
ÓÉ£¨1£©Öª
1
x
f(x)
Ϊ¼õº¯Êý£¬1-
2
2
¡Ü
1
x
f(x)
£¼
1
2
£¬
ËùÒÔa¡Ý
1
2
ÇÒb¡Ü1-
2
2
£®
µãÆÀ£º´ËÌâÊǸöÄÑÌ⣮¿¼²é»ù±¾³õµÈº¯ÊýµÄµ¥µ÷ÐÔ£¬ÒÔ¼°¹¹Ô캯ÊýÖ¤Ã÷²»µÈʽºÍºã³ÉÁ¢ÎÊÌ⣬×ÛºÏÐÔÇ¿£¬·½·¨Áé»î£¬ºÜºÃµÄ¿¼²éÁËͬѧÃǹ۲졢ÍÆÀíÒÔ¼°´´ÔìÐԵطÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÇø¼äDÉÏ£¬Èç¹ûº¯Êýf£¨x£©ÎªÔöº¯Êý£¬¶øº¯Êý
1
x
f(x)
Ϊ¼õº¯Êý£¬Ôò³Æº¯Êýf£¨x£©Îª¡°ÈõÔö¡±º¯Êý£®ÒÑÖªº¯Êýf(x)=1-
1
1+x
£®
£¨1£©ÅжϺ¯Êýf£¨x£©ÔÚÇø¼ä£¨0£¬1]ÉÏÊÇ·ñΪ¡°ÈõÔö¡±º¯Êý£»
£¨2£©Éèx1£¬x2¡Ê[0£¬+¡Þ£©£¬x1¡Ùx2£¬Ö¤Ã÷|f(x2)-f(x1)|£¼
1
2
|x2-x1|
£»
£¨3£©µ±x¡Ê[0£¬1]ʱ£¬²»µÈʽ1-ax¡Ü
1
1+x
¡Ü1-bx
ºã³ÉÁ¢£¬ÇóʵÊýa£¬bµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010Äê½­ËÕÊ¡ÑïÖÝÊÐÆÚÄ©Êýѧ¸´Ï°ÊÔ¾í3£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÔÚÇø¼äDÉÏ£¬Èç¹ûº¯Êýf£¨x£©ÎªÔöº¯Êý£¬¶øº¯ÊýΪ¼õº¯Êý£¬Ôò³Æº¯Êýf£¨x£©Îª¡°ÈõÔö¡±º¯Êý£®ÒÑÖªº¯Êý£®
£¨1£©ÅжϺ¯Êýf£¨x£©ÔÚÇø¼ä£¨0£¬1]ÉÏÊÇ·ñΪ¡°ÈõÔö¡±º¯Êý£»
£¨2£©Éèx1£¬x2¡Ê[0£¬+¡Þ£©£¬x1¡Ùx2£¬Ö¤Ã÷£»
£¨3£©µ±x¡Ê[0£¬1]ʱ£¬²»µÈʽºã³ÉÁ¢£¬ÇóʵÊýa£¬bµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º¹ã¶«ÈýÄ£ ÌâÐÍ£º½â´ðÌâ

ÔÚÇø¼äDÉÏ£¬Èç¹ûº¯Êýf£¨x£©ÎªÔöº¯Êý£¬¶øº¯Êý
1
x
f(x)
Ϊ¼õº¯Êý£¬Ôò³Æº¯Êýf£¨x£©Îª¡°ÈõÔö¡±º¯Êý£®ÒÑÖªº¯Êýf(x)=1-
1
1+x
£®
£¨1£©ÅжϺ¯Êýf£¨x£©ÔÚÇø¼ä£¨0£¬1]ÉÏÊÇ·ñΪ¡°ÈõÔö¡±º¯Êý£»
£¨2£©Éèx1£¬x2¡Ê[0£¬+¡Þ£©£¬x1¡Ùx2£¬Ö¤Ã÷|f(x2)-f(x1)|£¼
1
2
|x2-x1|
£»
£¨3£©µ±x¡Ê[0£¬1]ʱ£¬²»µÈʽ1-ax¡Ü
1
1+x
¡Ü1-bx
ºã³ÉÁ¢£¬ÇóʵÊýa£¬bµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011Äê½­ËÕÊ¡ÄϾ©ÊнðÁêÖÐѧ¸ß¿¼ÊýѧԤ²âÊÔ¾í£¨1£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÔÚÇø¼äDÉÏ£¬Èç¹ûº¯Êýf£¨x£©ÎªÔöº¯Êý£¬¶øº¯ÊýΪ¼õº¯Êý£¬Ôò³Æº¯Êýf£¨x£©Îª¡°ÈõÔöº¯Êý¡±£®ÒÑÖªº¯Êýf£¨x£©=1-£®
£¨1£©ÅжϺ¯Êýf£¨x£©ÔÚÇø¼ä£¨0£¬1]ÉÏÊÇ·ñΪ¡°ÈõÔöº¯Êý¡±£»
£¨2£©Éèx1£¬x2¡Ê[0£¬+¡Þ£©£¬ÇÒx1¡Ùx2£¬Ö¤Ã÷£º|f£¨x2£©-f£¨x1£©|£¼£»
£¨3£©µ±x¡Ê[0£¬1]ʱ£¬²»µÈʽ1-ax¡Ü¡Ü1-bxºã³ÉÁ¢£¬ÇóʵÊýa£¬bµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸