【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用 (单位:万元)与隔热层厚度 (单位: )满足关系,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(1)求的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值。
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数的极值;
(2)对于曲线上的不同两点,如果存在曲线上的点,且使得曲线在点处的切线,则称为弦的伴随直线,特别地,当时,又称为的—伴随直线.
①求证:曲线的任意一条弦均有伴随直线,并且伴随直线是唯一的;
②是否存在曲线,使得曲线的任意一条弦均有—伴随直线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,短轴一个端点到右焦点的距离为.
(1) 求椭圆的方程;
(2) 设直线与椭圆交于、两点,坐标原点到直线的距离为,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(ax2-x+1)(a>0,a≠1).
(1) 若a=,求函数f(x)的值域.
(2) 当f(x)在区间上为增函数时,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,游客从某旅游景区的景点处下上至处有两种路径.一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到,假设缆车匀速直线运动的速度为,山路长为1260,经测量,.
(1)求索道的长;
(2)问:乙出发多少后,乙在缆车上与甲的距离最短?
(3)为使两位游客在处互相等待的时间不超过,乙步行的速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知是定义在 上的奇函数,且,当,时,有成立.
(Ⅰ)判断在 上的单调性,并加以证明;
(Ⅱ)若对所有的恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的一段图象如图5所示:将的图像向右平移个单位,可得到函数的图象,且图像关于原点对称,
(1)求的值;
(2)求的最小值,并写出的表达式;
(3)若关于的函数在区间上最小值为,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知长方形中, , , 为的中点.将沿折起,使得平面平面.
(1)求证: ;
(2)若点是线段上的一动点,问点在何位置时,二面角的余弦值为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com