【题目】已知函数
.
(1)求函数
的极值;
(2)对于曲线上的不同两点
,如果存在曲线上的点
,且
使得曲线在点
处的切线
,则称
为弦
的伴随直线,特别地,当
时,又称
为
的
—伴随直线.
①求证:曲线
的任意一条弦均有伴随直线,并且伴随直线是唯一的;
②是否存在曲线
,使得曲线
的任意一条弦均有
—伴随直线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.
【答案】(Ⅰ)
…………………………………… 2分
当
,
,函数
在
内是增函数,
∴函数
没有极值。 ……………………………… 3分
当
时,令
,得
。
当
变化时,
与
变化情况如下表:
|
|
|
|
| + | 0 | - |
| 单调递增 | 极大值 | 单调递减 |
∴当
时,
取得极大值
。
综上,当
时,
没有极值;
当
时,
的极大值为
,没有极小值。 ……………5分
(Ⅱ)(ⅰ)设
是曲线
上的任意两点,要证明
有伴随切线,只需证明存在点
,使得
,且点
不在
上。 ……………………7分
∵
,即证存在
,使得
,即
成立,且点
不在
上。 …………………8分
以下证明方程
在
内有解。
记
,则
。
令
,
∴
,
∴
在
内是减函数,∴
。
取
,则
,即
。……9分
同理可证
。∴
。
∴函数
在
内有零点。
即方程
在
内有解
。………………10分
又对于函数
取
,则![]()
可知
,即点Q不在
上。
是增函数,∴
的零点是唯一的,
即方程
在
内有唯一解。
综上,曲线
上任意一条弦均有伴随切线,并且伴随切线是唯一的。…… 11分
(ⅱ)取曲线C:
,则曲线
的任意一条弦均有
伴随切线。
证明如下:设
是曲线C上任意两点
,
则
,
又
,
即曲线C:
的任意一条弦均有
伴随切线。
【解析】略
科目:高中数学 来源: 题型:
【题目】已知数据x1,x2,x3,…,xn是普通职工n(n≥3,n∈N*)个人的年收入,设这n个数据的中位数为x,平均数为y,方差为z,如果再加上世界首富的年收入xn+1,则这n+1个数据中,下列说法正确的是
A. 年收入平均数大大增大,中位数一定变大,方差可能不变
B. 年收入平均数大大增大,中位数可能不变,方差变大
C. 年收入平均数大大增大,中位数可能不变,方差也不变
D. 年收入平均数可能不变,中位数可能不变,方差可能不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四棱锥
中底面边长为
,侧棱PA与底面ABCD所成角的正切值为
.
![]()
(I)求正四棱锥
的外接球半径;
(II)若
是
中点,求异面直线
与
所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,
,AB=2CD=8.
![]()
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)当M点位于线段PC什么位置时,PA∥平面MBD?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】3名志愿者在10月1号至10月5号期间参加社区服务工作.
(1)若每名志愿者在这5天中任选一天参加社区服务工作,且各志愿者的选择互不影响,求3名志愿者恰好连续3天参加社区服务工作的概率;
(2)若每名志愿者在这5天中任选两天参加社区服务工作,且各志愿者的选择互不影响,记
表示这3名志愿者在10月1号参加社区服务工作的人数,求随机变量
的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用
(单位:万元)与隔热层厚度
(单位:
)满足关系
,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(1)求
的值及
的表达式;
(2)隔热层修建多厚时,总费用
达到最小,并求最小值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com