精英家教网 > 高中数学 > 题目详情
P、Q是抛物线y=x2上顶点以外的两点,O为坐标原点.∠POQ=,直线l1、l2分别是过P、Q两点抛物线的切线.(Ⅰ)则l1、l2的交点M点的轨迹方程是    ;(Ⅱ)若l1、l2分别交x轴于A、B两点,则过△ABM的垂心与点的直线方程是   
【答案】分析:(Ⅰ)先设出M(x,y),P(x1,y1),Q(x2,y2),根据.∠POQ=,得到含M,P,Q三点坐标的关系式,再因为直线l1、l2分别是过P、Q两点抛物线的切线,所以直线l1、l2的斜率分别是抛物线在P,Q两点处的导数,再求出直线l1、l2的方程,联立解出交点坐标,把得到的式子与前面得到的式子联立化简,就可得到M点的轨迹方程.
(Ⅱ)先求边BM上的高所在直线,其过点A,且斜率为,再与AB边上的高x= 联立即可得垂心的纵坐标,最后两点所在直线方程为一条垂直于y轴的直线
解答:解:(Ⅰ)设P(x1,y1),Q(x2,y2),M(x,y)
∵∠POQ=
==      ①
∵直线l1、l2分别是过P、Q两点抛物线的切线,y=x2,y′=2x
∴直线l1的方程为y-x12=2x1(x-x1
直线l2的方程为y-x22=2x2(x-x2
∴l1、l2的交点
∴x12+x22=(x1+x22-2x1x2=4x2-2y,y12+y22=x14+x24=(x12+x222-2x12x22=(4x2-2y)2-2y2   ②
将②代入①得
=
化简得4x2-y2-6y-1=0(y≠0)
故答案为4x2-y2-6y-1=0(y≠0)
(Ⅱ)由(I)得,A(,0),B(,0)
过点A,且与l2垂直的直线方程为y=(x-)     ③
过点M,且与AB垂直的直线方程为x=          ④
将④代入③得△ABM的垂心纵坐标y=-
∴过△ABM的垂心与点的直线方程是y=-
故答案为y=-
点评:本题考察了直线与抛物线的位置关系,参数法求点的轨迹方程,利用导数的几何意义写出切线方程,恰当的引入参数,并能巧妙地消去参数得轨迹方程是解决本题的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线S的顶点在坐标原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC所在直线l的方程为4x+y-20=0.
(I)求抛物线S的方程;
(II)若O是坐标原点,P、Q是抛物线S上的两动点,且满足PO⊥OQ.试说明动直线PQ是否过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,过F且斜率为
3
直线与抛物线在x轴上方的交点为M,过M作y轴的垂线,垂足为N,O为坐标原点,若四边形OFMN的面积为4
3

(1)求抛物线的方程;
(2)若P,Q是抛物线上异于原点O的两动点,且以线段PQ为直径的圆恒过原点O,求证:直线PQ过定点,并指出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

P、Q是抛物线y=x2上顶点以外的两点,O为坐标原点.∠POQ=
π
4
,直线l1、l2分别是过P、Q两点抛物线的切线.(Ⅰ)则l1、l2的交点M点的轨迹方程是
4x2-y2-6y-1=0(y≠0)
4x2-y2-6y-1=0(y≠0)
;(Ⅱ)若l1、l2分别交x轴于A、B两点,则过△ABM的垂心与点(0,-
1
4
)
的直线方程是
y=-
1
4
y=-
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P、Q是抛物线y=x2上顶点以外的两点,O为坐标原点.∠POQ=
π
4
,直线l1、l2分别是过P、Q两点抛物线的切线.(Ⅰ)则l1、l2的交点M点的轨迹方程是______;(Ⅱ)若l1、l2分别交x轴于A、B两点,则过△ABM的垂心与点(0,-
1
4
)
的直线方程是______.

查看答案和解析>>

同步练习册答案