精英家教网 > 高中数学 > 题目详情

【题目】一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是(
A.5800
B.6000
C.6200
D.6400

【答案】D
【解析】解:∵一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,

∴当另外两名员工的工资都小于5300时,中位数为 =5400,

当另外两名员工的工资都大于6500时,中位数为 =6300,

∴8位员工月工资的中位数的取值区间为[5400,6300],

∴8位员工月工资的中位数不可能是6400.

故选:D.

【考点精析】关于本题考查的平均数、中位数、众数,需要了解⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若f(x)是定义在R上的函数,且满足:①f(x)是偶函数;②f(x+2)是偶函数;③当0<x≤2时,f(x)=log2017x,当x=0时,f(0)=0,则方程f(x)=﹣2017在区间(1,10)内的多有实数根之和为(
A.0
B.10
C.12
D.24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C顶点在原点,焦点在y轴上,抛物线C上一点Q(a,2)到焦点的距离为3,线段AB的两端点A(x1 , y1)、B(x2 , y2)在抛物线C上.
(1)求抛物线C的方程;
(2)若y轴上存在一点M(0,m)(m>0),使线段AB经过点M时,以AB为直径的圆经过原点,求m的值;
(3)在抛物线C上存在点D(x3 , y3),满足x3<x1<x2 , 若△ABD是以角A为直角的等腰直角三角形,求△ABD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=(x﹣2)(ax+b)为偶函数,且在(0,+∞)单调递增,则f(2﹣x)>0的解集为(
A.{x|x>2或x<﹣2}
B.{x|﹣2<x<2}
C.{x|x<0或x>4}
D.{x|0<x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求以圆C1x2y212x2y130和圆C2x2y212x16y250的公共弦为直径的圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin(2x+ )﹣cos2x+
(Ⅰ)求函数f(x)在[0,π]上的单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,f(A)= ,a=3,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=(x2﹣ax+a+1)ex(a∈N)在区间(1,3)只有1个极值点,则曲线f(x)在点(0,f(0))处切线的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,且f(x)在( )上单调,则ω的最大值为(
A.11
B.9
C.7
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: + =1(a>b>0)过点 ,且离心率e为
(1)求椭圆E的方程;
(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案