精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱ABC-A1B1C1,AC⊥BC,AC=BC=BB1,点D是BC的中点.
(1)求证:A1C∥平面AB1D;
(2)求二面角B1-AD-B的正弦值;
(3)判断在线段B1B上是否存在一点M,使得A1M⊥B1D?若存在,求出数学公式的值;若不存在,请说明理由.

(1)证明:以C为坐标原点,建立如图所示的坐标系,
设AC=BC=BB1=2,则A1(2,0,2),C(0,0,0),D(0,1,0),A(2,0,0),B1(0,2,2),B(0,2,0)

设平面AB1D的法向量为=(x,y,z),则由,可得,故可取=(1,2,-1)
=0,∴A1C∥平面AB1D;
(2)解:由(1)知平面AB1D的法向量为=(1,2,-1),平面ABD的法向量为=(0,0,2)
∴二面角B1-AD-B的余弦值为||=||
∴二面角B1-AD-B的正弦值为
(3)解:设M(0,2,t),则=(-2,2,t-2),=(0,-1,-2)
若A1M⊥B1D,则,∴-2-2(t-2)=0,∴t=1
=1时,A1M⊥B1D.
分析:(1)以C为坐标原点,建立如图所示的坐标系,求出面AB1D的法向量,证明=0,即可得到结论;
(2)确定平面AB1D的法向量、平面ABD的法向量,利用向量的夹角公式,即可求得结论;
(3)设出M的坐标,利用则,可得结论.
点评:本题考查线面平行,考查面面角,考查向量知识的运用,解题的关键是正确建立坐标系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案