精英家教网 > 高中数学 > 题目详情
10.如图,四棱锥P-ABCD的底面ABCD为菱形,PD⊥底面ABCD,AD=2,∠DAB=60°,E为BC的中点.
(Ⅰ)证明:AD⊥平面PDE;
(Ⅱ)若PD=2,求点E到平面PAC的距离.

分析 (1)连结BD,由已知得△BDC的等边三角形从而DE⊥AD,由线面垂直得PD⊥AD,由此能证明AD⊥平面PDE.
(2)以D为原点,DA为x轴,DE为y轴,DP为z轴,建立空间直角坐标系,求出平面PAC的法向量,利用向量法能求出点E到平面PAC的距离.

解答 (1)证明:连结BD,
∵四棱锥P-ABCD的底面ABCD为菱形,PD⊥底面ABCD,AD=2,∠DAB=60°,E为BC的中点,
∴△BDC的等边三角形,∴DE⊥BC,
∴DE⊥AD,
∵PD⊥底面ABCD,AD?平面ABCD,
∴PD⊥AD,
又∵PD∩DE=D,∴AD⊥平面PDE.
(2)解:以D为原点,DA为x轴,DE为y轴,DP为z轴,建立空间直角坐标系,
由已知得P(0,0,2),A(2,0,0),C(-1,$\sqrt{3}$,0),E(1,$\sqrt{3}$,0),
$\overrightarrow{PA}$=(2,0,-2),$\overrightarrow{PC}$=(-1,$\sqrt{3}$,-2),$\overrightarrow{PE}$=(1,$\sqrt{3}$,0),
设平面PAC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PA}=2x-2z=0}\\{\overrightarrow{n}•\overrightarrow{PC}=-x+\sqrt{3}y-2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,$\sqrt{3}$,1),
∴点E到平面PAC的距离:d=$\frac{|\overrightarrow{PE}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{4}{\sqrt{5}}$=$\frac{4\sqrt{5}}{5}$.

点评 本题考查线面垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.直线l与椭圆$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1$相交于A、B两点,且线段AB的中点为M(1,1),则直线l的方程为x+3y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数f(x)与g(x)是相同函数的是(  )
A.$f(x)=\sqrt{{{(x-1)}^2}}$;g(x)=x-1B.$f(x)=\frac{{{x^2}-1}}{x-1}$;g(x)=x+1
C.f(x)=lg(x+1)+lg(x-1);g(x)=lg(x2-1)D.f(x)=ex+1.ex-1;g(x)=e2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设U=R,M={x|x≥2},N=x|-1≤x<4},求:
(1)M∩N;             
(2)(∁UN)∪(M∩N).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若命题“?a∈[2,4],使ax2+(a-3)x-3>0”是真命题,则实数x的取值范围是$(-∞,-1)∪(\frac{3}{4},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=$\left\{\begin{array}{l}{x^2}(x≤0)\\ 4sinx(0<x≤π)\end{array}$,则集合$\{x|f(x)=|{lg|x-\frac{π}{2}|}|\}$中的元素个数是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=cos({2x-\frac{π}{3}})+{sin^2}x-{cos^2}x+\sqrt{2}$.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若存在$t∈[{\frac{π}{12},\frac{π}{3}}]$满足[f(t)]2-2$\sqrt{2}$f(t)-m>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程lnx+2x=6的解一定位于区间(  )
A..(1,2)B.(2,3)C..(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足:f(a•b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判断f(x)的奇偶性,并证明你的结论;
(3)若f(2)=2,g(n)=$\frac{f({2}^{-n})}{n}$(n∈N*),求g(n)的解析式.

查看答案和解析>>

同步练习册答案