精英家教网 > 高中数学 > 题目详情
6.已知{1,2}⊆M?{1,2,3,4},则这样的集合M有(  )个.
A.2B.3C.4D.5

分析 根据集合关系确定集合M元素,即可确定集合M.

解答 解:∵{1,2}⊆M?{1,2,3,4},
∴集合M除了含有元素1,2之外,可能还含有3或4中,
∴集合M可能为{1,2}、{1,2,3}、{1,2,4},共3个.
故选:B.

点评 本题主要考查集合关系的应用,利用集合元素的关系确定集合M是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.己知△ABC的三个内角A,B,C所对的边是a,b,c,且$\frac{cosA}{cosB}$=-$\frac{a}{b+2c}$,则角A的大小为(  )
A.$\frac{1}{2}π$B.$\frac{4}{5}π$C.$\frac{3}{4}π$D.$\frac{2}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若存在实数x,使f(x)=x,则称x为f(x)的不动点.已知f(x)=$\frac{2x+a}{x+b}$有两个关于原点对称的不动点.
(1)求a,b须满足的充要条件;
(2)试用y=f(x)和y=x的图形表示上述两个不动点的位置(画草图).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(文科)已知数列{an}满足a1=1,an=$\frac{n-1}{n}$•an-1(n≥2).
(1)求{an}的通项公式
(2)设bn=${a_n}^2$,Tn=b1+b2+…+bn,求证:${T_n}<\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设角α的终边经过点P(-3a,4a),(a>0),则sinα+2cosα等于(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.-$\frac{2}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.△ABC中,D是线段BC上的点,sin∠BAD:sin∠CAD=1:3,△ADC的面积是△ADB面积的2倍.
(1)求$\frac{sinB}{sinC}$;
(2)若AD=1,BD=$\frac{\sqrt{2}}{2}$,求DC和AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.角θ的终边过点(3a-9,a+2),且sin2θ≤0,则a的范围是(  )
A.(-2,3)B.[-2,3)C.(-2,3]D.[-2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点P为椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1上一点,F1,F2分别为椭圆的左右焦点
(1)若|PF1|=4,N为PF1的中点,则ON=2$\sqrt{3}$-2.
(2)若PF1与y轴的交点M恰为PF1的中点,则M的坐标(0,±$\frac{\sqrt{3}}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.p:|x-m|<1,q:x2-8x+12<0,且q是p的必要不充分条件,则m的取值范围是(  )
A.3<m<5B.3≤m≤5C.m>5或m<3D.m≥5或m≤3

查看答案和解析>>

同步练习册答案