精英家教网 > 高中数学 > 题目详情

【题目】将 的图象向左平移 个单位,则所得图象的函数解析式为( )
A.y=sin2x
B.y=cos2x
C.
D.

【答案】B
【解析】解: 的图象向左平移 个单位,得y=sin[2(x+ )+ ],

即y=sin(2x+ )=cos2x,

∴所得图象的函数解析式为y=cos2x.

所以答案是:B.

【考点精析】根据题目的已知条件,利用函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2mx+10(m>1).
(1)若f(m)=1,求函数f(x)的解析式;
(2)若f(x)在区间(﹣∞,2]上是减函数,且对于任意的x1 , x2∈[1,m+1],|f(x1)﹣f(x2)|≤9恒成立,求实数m的取值范围;
(3)若f(x)在区间[3,5]上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(ax2+ax+2)(a∈R).
(1)若a=﹣1,求f(x)的单调区间;
(2)若函数f(x)的定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=ax(a>0且a≠1)与函数y=(a﹣1)x2﹣2x﹣1在同一坐标系内的图象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[﹣2,2]上的奇函数,且f(2)=3,若对任意的m,n∈[﹣2,2],m+n≠0,都有 >0.
(1)若f(2a﹣1)<f(a2﹣2a+2),求实数a的取值范围;
(2)若不等式f(x)≤(5﹣2a)t+1对任意x∈[﹣2,2]和a∈[﹣1,2]都恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面四边形ABCD中,AB= ,AD=2 ,CD= ,∠CBD=30°,∠BCD=120°.

(1)求BD的长;
(2)求∠ADC的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2+x﹣a.a∈R
(1)若不等式f(x)<b的解集为(﹣∞,﹣1)∪(3,+∞),求a,b的值;
(2)若a<0,解不等式f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx﹣3在x=1处取得极值,且在(0,﹣3)点处的切线与直线2x+y=0平行. (Ⅰ)求f(x)的解析式;
(Ⅱ)求函数g(x)=xf(x)+4x的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若f(a2﹣6)+f(﹣a)>0,则实数a的取值范围为

查看答案和解析>>

同步练习册答案