【题目】一项针对都市熟男(三线以上城市,岁男性)消费水平的调查显示,对于最近一年内是否购买过以下七类高价商品,全体被调查者,以及其中包括的1980年及以后出生(80后)被调查者,1980年以前出生(80前)被调查者回答“是”的比例分别如下:
全体被调查者 | 80后被调查者 | 80前被调查者 | |
电子产品 | 56.9% | 66.0% | 48.5% |
服装 | 23.0% | 24.9% | 21.2% |
手表 | 14.3% | 19.4% | 9.7% |
运动、户外用品 | 10.4% | 11.1% | 9.7% |
珠宝首饰 | 8.6% | 10.8% | 6.5% |
箱包 | 8.1% | 11.3% | 5.1% |
个护与化妆品 | 6.6% | 6.0% | 7.2% |
以上皆无 | 25.3% | 17.9% | 32.1% |
根据表格中数据判断,以下分析错误的是( )
A. 都市熟男购买比例最高的高价商品是电子产品
B. 从整体上看,80后购买高价商品的意愿高于80前
C. 80前超过3成一年内从未购买过表格中七类高价商品
D. 被调查的都市熟男中80后人数与80前人数的比例大约为
科目:高中数学 来源: 题型:
【题目】在一次公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示:
(1)现将参赛选手按成绩由好到差编为1~25号,再用系统抽样方法从中选取5人,已知选手甲的成绩为85分钟,若甲被选取,求被选取的其余4名选手的成绩的平均数;
(2)若从总体中选取一个样本,使得该样本的平均水平与总体相同,且样本的方差不大于7,则称选取的样本具有集中代表性,试从总体(25名参赛选手的成绩)选取一个具有集中代表性且样本容量为5的样本,并求该样本的方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现在,很多人都喜欢骑“共享单车”,但也有很多市民并不认可.为了调查人们对这种交通方式的认可度,某同学从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20名市民,得到了一个市民是否认可的样本,具体数据如下列联表:
附:,.
根据表中的数据,下列说法中,正确的是( )
A. 没有95% 以上的把握认为“是否认可与城市的拥堵情况有关”
B. 有99% 以上的把握认为“是否认可与城市的拥堵情况有关”
C. 可以在犯错误的概率不超过0.01的前提下认为“是否认可与城市的拥堵情况有关”
D. 可以在犯错误的概率不超过0.025的前提下认为“是否认可与城市的拥堵情况有关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,函数.
⑴若的定义域为,求实数的取值范围;
⑵当,求函数的最小值;
⑶是否存在实数,使得函数的定义域为,值域为?若存在,求出的值;若不存在,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现代社会,“鼠标手”已成为常见病,一次实验中,10名实验对象进行160分钟的连续鼠标点击游戏,每位实验对象完成的游戏关卡一样,鼠标点击频率平均为180次/分钟,实验研究人员测试了实验对象使用鼠标前后的握力变化,前臂表面肌电频率()等指标.
(I)10 名实验对象实验前、后握力(单位:)测试结果如下:
实验前:346,357,358,360,362,362,364,372,373,376
实验后:313,321,322,324,330,332,334,343,350,361
完成茎叶图,并计算实验后握力平均值比实验前握力的平均值下降了多少?
(Ⅱ)实验过程中测得时间(分)与10名实验对象前臂表面肌电频率()的中的位数()的九组对应数据为,.建立关于时间的线性回归方程;
(Ⅲ)若肌肉肌电水平显著下降,提示肌肉明显进入疲劳状态,根据(Ⅱ)中9组数据分析,使用鼠标多少分钟就该进行休息了?
参考数据:;
参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高二(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
(1)求高二(1)班全体女生的人数;
(2)由频率分布直方图估计该班女生此次数学测试成绩的众数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱中,侧棱底面,,,,,且点和分别为和的中点
(I)求证:平面;
(II)求二面角的正弦值;
(III)设为棱上的点,若直线和平面所成角的正弦值为,求的长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com