精英家教网 > 高中数学 > 题目详情

【题目】现在,很多人都喜欢骑“共享单车”,但也有很多市民并不认可.为了调查人们对这种交通方式的认可度,某同学从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20名市民,得到了一个市民是否认可的样本,具体数据如下列联表

附:

根据表中的数据,下列说法中,正确的是(

A. 没有95% 以上的把握认为“是否认可与城市的拥堵情况有关”

B. 有99% 以上的把握认为“是否认可与城市的拥堵情况有关”

C. 可以在犯错误的概率不超过0.01的前提下认为“是否认可与城市的拥堵情况有关”

D. 可以在犯错误的概率不超过0.025的前提下认为“是否认可与城市的拥堵情况有关”

【答案】D

【解析】分析:根据中列联表的数据,利用公式求得的值,即可得到结论

详解:由题意,根据中列联表的数据,

利用公式求得

又由

所以可以在犯错误的概率不超过的前提下认为“是否认可与城市的拥堵情况有关”,

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知矩形ABCD与直角梯形ABEF,∠DAF=∠FAB=90°,点G为DF的中点,AF=EF= ,P在线段CD上运动.
(1)证明:BF∥平面GAC;
(2)当P运动到CD的中点位置时,PG与PB长度之和最小,求二面角P﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣m(lnx+ )(m为实数,e=2.71828…是自然对数的底数). (Ⅰ)当m>1时,讨论f(x)的单调性;
(Ⅱ)若g(x)=x2f′(x)﹣xex在( ,3)内有两个零点,求实数m的取值范围.
(Ⅲ)当m=1时,证明:xf(x)+xlnx+1>x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三点,曲线上任意一点满足

的方程;

已知点,动点 在曲线C上,曲线C在Q处的切线与直线PA,PB都相交,交点分别为D,E,求的面积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Acosωx的图象,只需将函数y=f(x)的图象(
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与函数的图象有三个不同的交点,其中.给出下列四个结论: ①;②;③;④.其中,正确结论的个数有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行四边形ABCD中, ,若将其沿AC折成直二面角D﹣AC﹣B,则三棱锥D﹣ACB的外接球的表面积为(
A.16π
B.8π
C.4π
D.2π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,过A作AE⊥CD,垂足为E,现将△ADE沿AE折叠,使得DE⊥EC.

(1)求证:BC⊥面CDE;

(2)在线段AE上是否存在一点R,使得面BDR⊥面DCB,若存在,求出点R的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列,是其前项的和,且,则下列结论错误的是(

A. B. C. D. 均为的最大值

查看答案和解析>>

同步练习册答案