精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ﹣m(lnx+ )(m为实数,e=2.71828…是自然对数的底数). (Ⅰ)当m>1时,讨论f(x)的单调性;
(Ⅱ)若g(x)=x2f′(x)﹣xex在( ,3)内有两个零点,求实数m的取值范围.
(Ⅲ)当m=1时,证明:xf(x)+xlnx+1>x+

【答案】解:(Ⅰ)函数的定义域为(0,+∞), = . ∵m>1,令f′(x)=0,可得x=1,或x=lnm
①当m=e时,f′(x)≥0在(0,+∞)恒成立,∴此时f(x)在(0,+∞)递增;
②当m>e时,x∈(0,1)时,f′(x)>0,x∈(1,lnm)时,f′(x)<0,x∈(lnm,+∞)时,f′(x)>0
此时f(x)在(lnm,+∞),(0,1)递增,在(1,lnm)递减.
③当1<m<e时,x∈(0,lnm)时,f′(x)>0,x∈(lnm,1)时,f′(x)<0,x∈(1,+∞)时,f′(x)>0
此时f(x)在(1,+∞),(0,lnm)递增,在(lnm,1)递减.
(Ⅱ)g(x)=x2f′(x)﹣xex=﹣ex﹣m(x﹣1)在( ,3)内有两个零点,
方程﹣ex﹣m(x﹣1)=0在( ,3)内有两个实根,
即m=﹣ 在( ,3)内有两个实根,
令h(x)=﹣ ,h′(x)= =0,可得x=2,
x 时,h′(x)>0,x∈(2,3)时,h′(x)<0,
∴h(x)在( )递增,在(2,3),递减,
要使g(x)=x2f′(x)﹣xex在( ,3)内有两个零点,则
可得﹣ <m<﹣e2 , ∴实数m的取值范围为(﹣ ,﹣e2).
(Ⅲ)证明:当m=1时,要证xf(x)+xlnx+1>x+
只证x( ﹣lnx﹣ )+xlnx+1>x+ 在(0,+∞)恒成立.
只证 ,易得ex>x+1在(0,+∞)恒成立,
故只需证1> ,即证x>ln(x+1),
令F(x)=x﹣ln(x+1),F′(x)=1﹣ >0,故F(x)在(0,+∞)递增,而F(0)=0
∵F(x)>0在(0,+∞)恒成立.
∴xf(x)+xlnx+1>x+ 成立.
【解析】(Ⅰ)函数的定义域为(0,+∞), = .令f′(x)=0,可得x=1,或x=lnm 分①m=e,②m>e,③1<m<e分类讨论其单调性;(Ⅱ)g(x)=x2f′(x)﹣xex=﹣ex﹣m(x﹣1)在( ,3)内有两个零点,
方程﹣ex﹣m(x﹣1)=0在( ,3)内有两个实根,
即m=﹣ 在( ,3)内有两个实根,
令h(x)=﹣ ,可得h(x)在( )递增,在(2,3),递减,
要使g(x)=x2f′(x)﹣xex在( ,3)内有两个零点,则
可得实数m的取值范围为(﹣ ,﹣e2).(Ⅲ)当m=1时,要证xf(x)+xlnx+1>x+ .只证x( ﹣lnx﹣ )+xlnx+1>x+ 在(0,+∞)恒成立.
只证 ,易得ex>x+1在(0,+∞)恒成立,
故只需证1> ,即证x>ln(x+1)即可,
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的最小正周期和对称轴方程;

(2)若,求的值域.

【答案】(1)对称轴为,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.

(1)

,则

的对称轴为,最小正周期

(2)当时,

因为单调递增,在单调递减,

取最大值,在取最小值,

所以

所以

【点睛】

本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.

型】解答
束】
21

【题目】已知等比数列的前项和为,公比

(1)求等比数列的通项公式;

(2)设,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Ⅰ)如表所示是某市最近5年个人年平均收入表节选.求y关于x的回归直线方程,并估计第6年该市的个人年平均收入(保留三位有效数字).

年份x

1

2

3

4

5

收入y(千元)

21

24

27

29

31

其中 1:= =

Ⅱ)下表是从调查某行业个人平均收入与接受专业培训时间关系得到2×2列联表:

受培时间一年以上

受培时间不足一年

总计

收入不低于平均值

60

20

收入低于平均值

10

20

总计

100

完成上表,并回答:能否在犯错概率不超过0.05的前提下认为收入与接受培训时间有关系”.

2:

PK2k0

0.50

0.40

0.10

0.05

0.01

0.005

k0

0.455

0.708

2.706

3.841

6.635

7.879

3:

K2=.(n=a+b+c+d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增大,下表是该地一农业银行连续五年的储蓄存款(年底余额),如下表:

为了研究方便,工作人员将上表的数据进行了处理,,得到下表:

1)求关于的线性回归方程;

2)求关于的线性回归方程;

3)用所求回归方程预测,到2020年底,该地储蓄存款额大约可达多少?

(附:线性回归方程:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P—ABC中,△PBC为等边三角形,点O为BC的中点,AC⊥PB,平面PBC⊥平面ABC.

(1)求直线PB和平面ABC所成的角的大小;

(2)求证:平面PAC⊥平面PBC;

(3)已知E为PO的中点,F是AB上的点,AF=AB.若EF∥平面PAC,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣x3与g(x)=x3﹣ax的图象上存在关于x轴的对称点,则实数a的取值范围为(
A.(﹣∞,e)
B.(﹣∞,e]
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现在,很多人都喜欢骑“共享单车”,但也有很多市民并不认可.为了调查人们对这种交通方式的认可度,某同学从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20名市民,得到了一个市民是否认可的样本,具体数据如下列联表

附:

根据表中的数据,下列说法中,正确的是(

A. 没有95% 以上的把握认为“是否认可与城市的拥堵情况有关”

B. 有99% 以上的把握认为“是否认可与城市的拥堵情况有关”

C. 可以在犯错误的概率不超过0.01的前提下认为“是否认可与城市的拥堵情况有关”

D. 可以在犯错误的概率不超过0.025的前提下认为“是否认可与城市的拥堵情况有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数的图象沿轴向左平移个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数的图象,对于函数有以下四个判断:

①该函数的解析式为;

②该函数图象关于点对称;

③该函数在[,上是增函数;

④函数上的最小值为,则

其中,正确判断的序号是______

查看答案和解析>>

同步练习册答案